环境时间序列的复杂性分析。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-03 DOI:10.3390/e27040381
Holger Lange, Michael Hauhs
{"title":"环境时间序列的复杂性分析。","authors":"Holger Lange, Michael Hauhs","doi":"10.3390/e27040381","DOIUrl":null,"url":null,"abstract":"<p><p>Small, forested catchments are prototypes of terrestrial ecosystems and have been studied in several disciplines of environmental science over several decades. Time series of water and matter fluxes and nutrient concentrations from these systems exhibit a bewildering diversity of spatiotemporal patterns, indicating the intricate nature of processes acting on a large range of time scales. Nonlinear dynamics is an obvious framework to investigate catchment time series. We analyzed selected long-term data from three headwater catchments in the Bramke valley, Harz mountains, Lower Saxony in Germany at common biweekly resolution for the period 1991 to 2023. For every time series, we performed gap filling, detrending, and removal of the annual cycle using singular system analysis (SSA), and then calculated metrics based on ordinal pattern statistics: the permutation entropy, permutation complexity, and Fisher information, as well as their generalized versions (q-entropy and α-entropy). Further, the position of each variable in Tarnopolski diagrams is displayed and compared to reference stochastic processes, like fractional Brownian motion, fractional Gaussian noise, and β noise. Still another way of distinguishing deterministic chaos and structured noise, and quantifying the latter, is provided by the complexity from ordinal pattern positioned slopes (COPPS). We also constructed horizontal visibility graphs and estimated the exponent of the decay of the degree distribution. Taken together, the analyses create a characterization of the dynamics of these systems which can be scrutinized for universality, either across variables or between the three geographically very close catchments.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Complexity Analysis of Environmental Time Series.\",\"authors\":\"Holger Lange, Michael Hauhs\",\"doi\":\"10.3390/e27040381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small, forested catchments are prototypes of terrestrial ecosystems and have been studied in several disciplines of environmental science over several decades. Time series of water and matter fluxes and nutrient concentrations from these systems exhibit a bewildering diversity of spatiotemporal patterns, indicating the intricate nature of processes acting on a large range of time scales. Nonlinear dynamics is an obvious framework to investigate catchment time series. We analyzed selected long-term data from three headwater catchments in the Bramke valley, Harz mountains, Lower Saxony in Germany at common biweekly resolution for the period 1991 to 2023. For every time series, we performed gap filling, detrending, and removal of the annual cycle using singular system analysis (SSA), and then calculated metrics based on ordinal pattern statistics: the permutation entropy, permutation complexity, and Fisher information, as well as their generalized versions (q-entropy and α-entropy). Further, the position of each variable in Tarnopolski diagrams is displayed and compared to reference stochastic processes, like fractional Brownian motion, fractional Gaussian noise, and β noise. Still another way of distinguishing deterministic chaos and structured noise, and quantifying the latter, is provided by the complexity from ordinal pattern positioned slopes (COPPS). We also constructed horizontal visibility graphs and estimated the exponent of the decay of the degree distribution. Taken together, the analyses create a characterization of the dynamics of these systems which can be scrutinized for universality, either across variables or between the three geographically very close catchments.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040381\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040381","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

小型的森林集水区是陆地生态系统的原型,几十年来在环境科学的几个学科中进行了研究。来自这些系统的水和物质通量以及营养物质浓度的时间序列呈现出令人眼花缭乱的时空格局多样性,表明在大范围时间尺度上作用的过程的复杂性。非线性动力学是研究流域时间序列的一个明显的框架。我们分析了1991年至2023年期间德国下萨克森州哈茨山脉Bramke山谷三个水源集水区的长期数据,以共同的双周分辨率。对于每个时间序列,我们使用奇异系统分析(SSA)进行间隙填充、去趋势化和年周期去除,然后基于有序模式统计计算度量:排列熵、排列复杂性和Fisher信息,以及它们的广义版本(q-熵和α-熵)。此外,显示了Tarnopolski图中每个变量的位置,并将其与参考随机过程(如分数阶布朗运动、分数阶高斯噪声和β噪声)进行了比较。另一种区分确定性混沌和结构化噪声并对后者进行量化的方法是由有序模式定位斜率(COPPS)的复杂度提供的。我们还构造了水平可见性图,并估计了度分布的衰减指数。综上所述,这些分析创造了这些系统的动态特征,可以在变量之间或在三个地理上非常接近的流域之间仔细审查其普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity Analysis of Environmental Time Series.

Small, forested catchments are prototypes of terrestrial ecosystems and have been studied in several disciplines of environmental science over several decades. Time series of water and matter fluxes and nutrient concentrations from these systems exhibit a bewildering diversity of spatiotemporal patterns, indicating the intricate nature of processes acting on a large range of time scales. Nonlinear dynamics is an obvious framework to investigate catchment time series. We analyzed selected long-term data from three headwater catchments in the Bramke valley, Harz mountains, Lower Saxony in Germany at common biweekly resolution for the period 1991 to 2023. For every time series, we performed gap filling, detrending, and removal of the annual cycle using singular system analysis (SSA), and then calculated metrics based on ordinal pattern statistics: the permutation entropy, permutation complexity, and Fisher information, as well as their generalized versions (q-entropy and α-entropy). Further, the position of each variable in Tarnopolski diagrams is displayed and compared to reference stochastic processes, like fractional Brownian motion, fractional Gaussian noise, and β noise. Still another way of distinguishing deterministic chaos and structured noise, and quantifying the latter, is provided by the complexity from ordinal pattern positioned slopes (COPPS). We also constructed horizontal visibility graphs and estimated the exponent of the decay of the degree distribution. Taken together, the analyses create a characterization of the dynamics of these systems which can be scrutinized for universality, either across variables or between the three geographically very close catchments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信