胸主动脉三维几何。

IF 3.8 Q1 PERIPHERAL VASCULAR DISEASE
Pulse Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.1159/000543613
Cameron Beeche, Marie-Joe Dib, Bingxin Zhao, Joe David Azzo, Hamed Tavolinejad, Hannah Maynard, Jeffrey Thomas Duda, James Gee, Oday Salman, Walter R Witschey, Julio Chirinos
{"title":"胸主动脉三维几何。","authors":"Cameron Beeche, Marie-Joe Dib, Bingxin Zhao, Joe David Azzo, Hamed Tavolinejad, Hannah Maynard, Jeffrey Thomas Duda, James Gee, Oday Salman, Walter R Witschey, Julio Chirinos","doi":"10.1159/000543613","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Aortic structure impacts cardiovascular health through multiple mechanisms. Aortic structural degeneration occurs with aging, increasing left ventricular afterload and promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been comprehensively characterized in large populations.</p><p><strong>Methods: </strong>We segmented the complete thoracic aorta using a deep learning architecture and used morphological image operations to extract multiple aortic geometric phenotypes (AGPs, including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank.</p><p><strong>Conclusion: </strong>Our method provides a fully automated approach toward quantifying the three-dimensional structural parameters of the aorta. This approach expands the available phenotypes in two large representative biobanks and will allow large-scale studies to elucidate the biology and clinical consequences of aortic degeneration related to aging and disease states.</p>","PeriodicalId":29774,"journal":{"name":"Pulse","volume":"13 1","pages":"72-79"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thoracic Aortic Three-Dimensional Geometry.\",\"authors\":\"Cameron Beeche, Marie-Joe Dib, Bingxin Zhao, Joe David Azzo, Hamed Tavolinejad, Hannah Maynard, Jeffrey Thomas Duda, James Gee, Oday Salman, Walter R Witschey, Julio Chirinos\",\"doi\":\"10.1159/000543613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Aortic structure impacts cardiovascular health through multiple mechanisms. Aortic structural degeneration occurs with aging, increasing left ventricular afterload and promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been comprehensively characterized in large populations.</p><p><strong>Methods: </strong>We segmented the complete thoracic aorta using a deep learning architecture and used morphological image operations to extract multiple aortic geometric phenotypes (AGPs, including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank.</p><p><strong>Conclusion: </strong>Our method provides a fully automated approach toward quantifying the three-dimensional structural parameters of the aorta. This approach expands the available phenotypes in two large representative biobanks and will allow large-scale studies to elucidate the biology and clinical consequences of aortic degeneration related to aging and disease states.</p>\",\"PeriodicalId\":29774,\"journal\":{\"name\":\"Pulse\",\"volume\":\"13 1\",\"pages\":\"72-79\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000543613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000543613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

主动脉结构通过多种机制影响心血管健康。主动脉结构变性随着年龄的增长而发生,增加左心室后负荷,促进动脉搏动增加和靶器官损伤。尽管主动脉结构对心血管健康有影响,但在大量人群中,三维(3D)主动脉几何形状尚未得到全面表征。方法:我们使用深度学习架构对完整的胸主动脉进行分割,并使用形态学图像操作提取胸主动脉各亚段的多种主动脉几何表型(agp,包括直径、长度、曲率和扭曲度)。我们将分割方法应用于来自英国生物银行的54241名参与者和宾夕法尼亚医学生物银行的8456名参与者的成像扫描。结论:该方法为主动脉三维结构参数的量化提供了一种全自动方法。这种方法扩大了两个大型代表性生物库中可用的表型,并将允许大规模研究阐明与衰老和疾病状态相关的主动脉变性的生物学和临床后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thoracic Aortic Three-Dimensional Geometry.

Introduction: Aortic structure impacts cardiovascular health through multiple mechanisms. Aortic structural degeneration occurs with aging, increasing left ventricular afterload and promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been comprehensively characterized in large populations.

Methods: We segmented the complete thoracic aorta using a deep learning architecture and used morphological image operations to extract multiple aortic geometric phenotypes (AGPs, including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank.

Conclusion: Our method provides a fully automated approach toward quantifying the three-dimensional structural parameters of the aorta. This approach expands the available phenotypes in two large representative biobanks and will allow large-scale studies to elucidate the biology and clinical consequences of aortic degeneration related to aging and disease states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
4.50%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信