Hessam Yaghmaei, Amirmahdi Taromiha, Seyed Ali Nojoumi, Masood Soltanipur, Sina Shahshenas, Mahdi Rezaei, Seyed Mohsen Mirhosseini, Seyyed Mohammad Hosseini, Seyed Davar Siadat
{"title":"肠-肝轴在非酒精性脂肪肝中的作用","authors":"Hessam Yaghmaei, Amirmahdi Taromiha, Seyed Ali Nojoumi, Masood Soltanipur, Sina Shahshenas, Mahdi Rezaei, Seyed Mohsen Mirhosseini, Seyyed Mohammad Hosseini, Seyed Davar Siadat","doi":"10.61186/ibj.4212","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health problem, mainly due to the increasing prevalence of obesity and metabolic syndrome. The gut microbiota plays an essential role in the development of NAFLD through the gut-liver axis. Dysbiosis of. the gut microbiota (GM) is associated with the pathogenesis of NAFLD. Dietary choices and other lifestyle factors influence the composition of the GM and contribute to the development of NAFLD. At the phylum level, individuals with NAFLD show an increased level in Actinobacteria and Firmicutes, while Verrucomicrobia, Thermus, Proteobacteria, Lentiphaerae, and Fusobacteria are found to be decreased. Several genera, including Faecalibacterium and Akkermansia, exhibit alterations in NAFLD and are linked to disease progression. Modulating the GM through prebiotics, probiotics, or fecal microbiota transplantation represents a promising therapeutic strategy for NAFLD. This review summarizes the current understanding of GM changes in NAFLD, focusing on findings from both human and animal studies.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":"29 1 & 2","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Gut-Liver Axis in Non-Alcoholic Fatty Liver Disease\",\"authors\":\"Hessam Yaghmaei, Amirmahdi Taromiha, Seyed Ali Nojoumi, Masood Soltanipur, Sina Shahshenas, Mahdi Rezaei, Seyed Mohsen Mirhosseini, Seyyed Mohammad Hosseini, Seyed Davar Siadat\",\"doi\":\"10.61186/ibj.4212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health problem, mainly due to the increasing prevalence of obesity and metabolic syndrome. The gut microbiota plays an essential role in the development of NAFLD through the gut-liver axis. Dysbiosis of. the gut microbiota (GM) is associated with the pathogenesis of NAFLD. Dietary choices and other lifestyle factors influence the composition of the GM and contribute to the development of NAFLD. At the phylum level, individuals with NAFLD show an increased level in Actinobacteria and Firmicutes, while Verrucomicrobia, Thermus, Proteobacteria, Lentiphaerae, and Fusobacteria are found to be decreased. Several genera, including Faecalibacterium and Akkermansia, exhibit alterations in NAFLD and are linked to disease progression. Modulating the GM through prebiotics, probiotics, or fecal microbiota transplantation represents a promising therapeutic strategy for NAFLD. This review summarizes the current understanding of GM changes in NAFLD, focusing on findings from both human and animal studies.</p>\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":\"29 1 & 2\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/ibj.4212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/ibj.4212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Role of Gut-Liver Axis in Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health problem, mainly due to the increasing prevalence of obesity and metabolic syndrome. The gut microbiota plays an essential role in the development of NAFLD through the gut-liver axis. Dysbiosis of. the gut microbiota (GM) is associated with the pathogenesis of NAFLD. Dietary choices and other lifestyle factors influence the composition of the GM and contribute to the development of NAFLD. At the phylum level, individuals with NAFLD show an increased level in Actinobacteria and Firmicutes, while Verrucomicrobia, Thermus, Proteobacteria, Lentiphaerae, and Fusobacteria are found to be decreased. Several genera, including Faecalibacterium and Akkermansia, exhibit alterations in NAFLD and are linked to disease progression. Modulating the GM through prebiotics, probiotics, or fecal microbiota transplantation represents a promising therapeutic strategy for NAFLD. This review summarizes the current understanding of GM changes in NAFLD, focusing on findings from both human and animal studies.