MicroRNA novel-miR-90-5p通过靶向cyp18a1调节Ostrinia furnacalis (guen)的幼虫脱壳发育。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Hong-Yun Ruan, Xue Tang, Jian-Yu Meng, Chang-Yu Zhang
{"title":"MicroRNA novel-miR-90-5p通过靶向cyp18a1调节Ostrinia furnacalis (guen<s:1>)的幼虫脱壳发育。","authors":"Hong-Yun Ruan, Xue Tang, Jian-Yu Meng, Chang-Yu Zhang","doi":"10.1111/1744-7917.70071","DOIUrl":null,"url":null,"abstract":"<p><p>The hormone 20-hydroxyecdysone (20E) plays an important role in the physiological processes of insect growth, development, and ecdysis, whereas CYP18A1, a 20E hydroxylase, participates in 20E degradation and maintains its equilibrium state, which is an indispensable part of the 20E signaling pathway. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and mediate various biological processes. However, whether and how miRNAs regulate CYP18A1 remains unclear. Herein, OfCYP18A1 was expressed in different developmental stages and tissues. After OfCYP18A1 knockdown, the survival and ecdysis rates of larvae as well as their body weight and length significantly decreased, causing the larvae to molt early but not completely, resulting in death. The concentration of 20E in larvae significantly increased, whereas that of juvenile hormone (JH) significantly decreased. To further investigate the regulatory mechanism of OfCYP18A1, an miRNA (novel-miR-90-5p) targeting OfCYP18A1 was proposed. Novel-miR-90-5p was expressed in different developmental stages and tissues of Ostrinia furnacalis, and it exhibited an inverse trend to OfCYP18A1. Novel-miR-90-5p overexpression in O. furnacalis significantly decreased larval survival and ecdysis rates, delayed their development, decreased the larval body size, increased 20E concentration, and decreased JH concentration. However, after novel-miR-90-5p expression inhibition, the survival rate of 3rd-instar larvae did not significantly differ, their body weight and length significantly increased, ecdysis was delayed, 20E concentration significantly decreased, and JH concentration did not significantly change. These findings reveal that miRNAs are involved in OfCYP18A1 regulation during insect growth and development, thus enhancing our understanding of insect defense strategies.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA novel-miR-90-5p modulates larval molt development in Ostrinia furnacalis (Guenée) by targeting OfCYP18A1.\",\"authors\":\"Hong-Yun Ruan, Xue Tang, Jian-Yu Meng, Chang-Yu Zhang\",\"doi\":\"10.1111/1744-7917.70071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hormone 20-hydroxyecdysone (20E) plays an important role in the physiological processes of insect growth, development, and ecdysis, whereas CYP18A1, a 20E hydroxylase, participates in 20E degradation and maintains its equilibrium state, which is an indispensable part of the 20E signaling pathway. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and mediate various biological processes. However, whether and how miRNAs regulate CYP18A1 remains unclear. Herein, OfCYP18A1 was expressed in different developmental stages and tissues. After OfCYP18A1 knockdown, the survival and ecdysis rates of larvae as well as their body weight and length significantly decreased, causing the larvae to molt early but not completely, resulting in death. The concentration of 20E in larvae significantly increased, whereas that of juvenile hormone (JH) significantly decreased. To further investigate the regulatory mechanism of OfCYP18A1, an miRNA (novel-miR-90-5p) targeting OfCYP18A1 was proposed. Novel-miR-90-5p was expressed in different developmental stages and tissues of Ostrinia furnacalis, and it exhibited an inverse trend to OfCYP18A1. Novel-miR-90-5p overexpression in O. furnacalis significantly decreased larval survival and ecdysis rates, delayed their development, decreased the larval body size, increased 20E concentration, and decreased JH concentration. However, after novel-miR-90-5p expression inhibition, the survival rate of 3rd-instar larvae did not significantly differ, their body weight and length significantly increased, ecdysis was delayed, 20E concentration significantly decreased, and JH concentration did not significantly change. These findings reveal that miRNAs are involved in OfCYP18A1 regulation during insect growth and development, thus enhancing our understanding of insect defense strategies.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.70071\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70071","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

激素20-羟基蜕皮激素(20-hydroxyecdysone, 20E)在昆虫生长发育和蜕皮的生理过程中起着重要作用,而20E羟化酶CYP18A1参与20E的降解并维持其平衡状态,是20E信号通路不可或缺的组成部分。MicroRNAs (miRNAs)是重要的基因表达转录后调控因子,介导多种生物过程。然而,mirna是否以及如何调节CYP18A1仍不清楚。其中,OfCYP18A1在不同的发育阶段和组织中表达。OfCYP18A1基因敲低后,幼虫的存活率和蜕皮率以及体重和体长明显降低,导致幼虫蜕皮早但不完全,导致死亡。20E浓度显著升高,JH浓度显著降低。为了进一步研究OfCYP18A1的调控机制,我们提出了一种靶向OfCYP18A1的miRNA (novel-miR-90-5p)。Novel-miR-90-5p在亚洲Ostrinia furnacalis的不同发育阶段和组织中表达,与OfCYP18A1呈相反趋势。Novel-miR-90-5p过表达显著降低了furnacalis幼虫的存活率和孵化率,延缓了它们的发育,减小了幼虫的体型,增加了20E浓度,降低了JH浓度。然而,novel-miR-90-5p表达抑制后,3龄幼虫的存活率无显著差异,体重和体长显著增加,蜕膜延迟,20E浓度显著降低,JH浓度无显著变化。这些发现表明,在昆虫生长发育过程中,mirna参与了OfCYP18A1的调控,从而增强了我们对昆虫防御策略的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MicroRNA novel-miR-90-5p modulates larval molt development in Ostrinia furnacalis (Guenée) by targeting OfCYP18A1.

The hormone 20-hydroxyecdysone (20E) plays an important role in the physiological processes of insect growth, development, and ecdysis, whereas CYP18A1, a 20E hydroxylase, participates in 20E degradation and maintains its equilibrium state, which is an indispensable part of the 20E signaling pathway. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and mediate various biological processes. However, whether and how miRNAs regulate CYP18A1 remains unclear. Herein, OfCYP18A1 was expressed in different developmental stages and tissues. After OfCYP18A1 knockdown, the survival and ecdysis rates of larvae as well as their body weight and length significantly decreased, causing the larvae to molt early but not completely, resulting in death. The concentration of 20E in larvae significantly increased, whereas that of juvenile hormone (JH) significantly decreased. To further investigate the regulatory mechanism of OfCYP18A1, an miRNA (novel-miR-90-5p) targeting OfCYP18A1 was proposed. Novel-miR-90-5p was expressed in different developmental stages and tissues of Ostrinia furnacalis, and it exhibited an inverse trend to OfCYP18A1. Novel-miR-90-5p overexpression in O. furnacalis significantly decreased larval survival and ecdysis rates, delayed their development, decreased the larval body size, increased 20E concentration, and decreased JH concentration. However, after novel-miR-90-5p expression inhibition, the survival rate of 3rd-instar larvae did not significantly differ, their body weight and length significantly increased, ecdysis was delayed, 20E concentration significantly decreased, and JH concentration did not significantly change. These findings reveal that miRNAs are involved in OfCYP18A1 regulation during insect growth and development, thus enhancing our understanding of insect defense strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信