Huiling Zhang, Juanzhen Luo, Qinzhao Wan, Xuecheng Wang, Zhenfeng Wu, Ming Yang, Yaqi Wang
{"title":"冷冻调压提取工艺对桂枝提取物理化性质及药理活性的影响。","authors":"Huiling Zhang, Juanzhen Luo, Qinzhao Wan, Xuecheng Wang, Zhenfeng Wu, Ming Yang, Yaqi Wang","doi":"10.3389/fchem.2025.1581429","DOIUrl":null,"url":null,"abstract":"<p><p>Extraction is the core process for obtaining bioactive compounds from medicinal plants. Enhancing the extraction efficiency of aromatic herbs has become a critical challenge. This study introduced a novel freeze-pressure regulated extraction (FE) technique to improve the extraction efficiency of Gui Zhi (GZ). Compared to traditional methods, FE yielded a significantly lower pH of 4.74, a higher zeta potential of -13.93 mV, and a smaller average particle size of 304.57 nm. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) confirmed that FE creates larger pores and an expanded surface area, facilitating more effective compound release. HPLC analysis indicated that FE increased the cinnamaldehyde content from 348.53 to 370.20 μg/g. UPLC-MS analysis further demonstrated that FE is more effective for extracting volatile and phenolic compounds. Furthermore, the therapeutic effect of GZ extract on a wind-cold syndrome model was investigated. FE significantly alleviated symptoms and restored lung tissue integrity, through the regulation of the citric acid cycle and thiamine metabolism pathways. The findings not only support the application of FE technology in herbal extraction but also offer novel approaches for the efficient utilization of herbs like GZ in modern medicine.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1581429"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of freeze-pressure regulated extraction technology on the physicochemical properties and pharmacological activities of guizhi extract.\",\"authors\":\"Huiling Zhang, Juanzhen Luo, Qinzhao Wan, Xuecheng Wang, Zhenfeng Wu, Ming Yang, Yaqi Wang\",\"doi\":\"10.3389/fchem.2025.1581429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extraction is the core process for obtaining bioactive compounds from medicinal plants. Enhancing the extraction efficiency of aromatic herbs has become a critical challenge. This study introduced a novel freeze-pressure regulated extraction (FE) technique to improve the extraction efficiency of Gui Zhi (GZ). Compared to traditional methods, FE yielded a significantly lower pH of 4.74, a higher zeta potential of -13.93 mV, and a smaller average particle size of 304.57 nm. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) confirmed that FE creates larger pores and an expanded surface area, facilitating more effective compound release. HPLC analysis indicated that FE increased the cinnamaldehyde content from 348.53 to 370.20 μg/g. UPLC-MS analysis further demonstrated that FE is more effective for extracting volatile and phenolic compounds. Furthermore, the therapeutic effect of GZ extract on a wind-cold syndrome model was investigated. FE significantly alleviated symptoms and restored lung tissue integrity, through the regulation of the citric acid cycle and thiamine metabolism pathways. The findings not only support the application of FE technology in herbal extraction but also offer novel approaches for the efficient utilization of herbs like GZ in modern medicine.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"13 \",\"pages\":\"1581429\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2025.1581429\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1581429","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of freeze-pressure regulated extraction technology on the physicochemical properties and pharmacological activities of guizhi extract.
Extraction is the core process for obtaining bioactive compounds from medicinal plants. Enhancing the extraction efficiency of aromatic herbs has become a critical challenge. This study introduced a novel freeze-pressure regulated extraction (FE) technique to improve the extraction efficiency of Gui Zhi (GZ). Compared to traditional methods, FE yielded a significantly lower pH of 4.74, a higher zeta potential of -13.93 mV, and a smaller average particle size of 304.57 nm. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) confirmed that FE creates larger pores and an expanded surface area, facilitating more effective compound release. HPLC analysis indicated that FE increased the cinnamaldehyde content from 348.53 to 370.20 μg/g. UPLC-MS analysis further demonstrated that FE is more effective for extracting volatile and phenolic compounds. Furthermore, the therapeutic effect of GZ extract on a wind-cold syndrome model was investigated. FE significantly alleviated symptoms and restored lung tissue integrity, through the regulation of the citric acid cycle and thiamine metabolism pathways. The findings not only support the application of FE technology in herbal extraction but also offer novel approaches for the efficient utilization of herbs like GZ in modern medicine.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.