{"title":"早期果蝇唾液腺的单细胞分析表明,形态发生控制包括诱导和排除基因表达程序。","authors":"Annabel May, Katja Röper","doi":"10.1371/journal.pbio.3003133","DOIUrl":null,"url":null,"abstract":"<p><p>How tissue shape and therefore function is encoded by the genome remains in many cases unresolved. The tubes of the salivary glands in the Drosophila embryo start from simple epithelial placodes, specified through the homeotic factors Scr/Hth/Exd. Previous work indicated that early morphogenetic changes are prepatterned by transcriptional changes, but an exhaustive transcriptional blueprint driving physical changes was lacking. We performed single-cell-RNAseq-analysis of FACS-isolated early placodal cells, making up less than 0.4% of cells within the embryo. Differential expression analysis in comparison to epidermal cells analyzed in parallel generated a repertoire of genes highly upregulated within placodal cells prior to morphogenetic changes. Furthermore, clustering and pseudotime analysis of single-cell-sequencing data identified dynamic expression changes along the morphogenetic timeline. Our dataset provides a comprehensive resource for future studies of a simple but highly conserved morphogenetic process of tube morphogenesis. Unexpectedly, we identified a subset of genes that, although initially expressed in the very early placode, then became selectively excluded from the placode but not the surrounding epidermis, including hth, grainyhead and tollo/toll-8. We show that maintaining tollo expression severely compromised the tube morphogenesis. We propose tollo is switched off to not interfere with key Tolls/LRRs that are expressed and function in the tube morphogenesis.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003133"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell analysis of the early Drosophila salivary gland reveals that morphogenetic control involves both the induction and exclusion of gene expression programs.\",\"authors\":\"Annabel May, Katja Röper\",\"doi\":\"10.1371/journal.pbio.3003133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How tissue shape and therefore function is encoded by the genome remains in many cases unresolved. The tubes of the salivary glands in the Drosophila embryo start from simple epithelial placodes, specified through the homeotic factors Scr/Hth/Exd. Previous work indicated that early morphogenetic changes are prepatterned by transcriptional changes, but an exhaustive transcriptional blueprint driving physical changes was lacking. We performed single-cell-RNAseq-analysis of FACS-isolated early placodal cells, making up less than 0.4% of cells within the embryo. Differential expression analysis in comparison to epidermal cells analyzed in parallel generated a repertoire of genes highly upregulated within placodal cells prior to morphogenetic changes. Furthermore, clustering and pseudotime analysis of single-cell-sequencing data identified dynamic expression changes along the morphogenetic timeline. Our dataset provides a comprehensive resource for future studies of a simple but highly conserved morphogenetic process of tube morphogenesis. Unexpectedly, we identified a subset of genes that, although initially expressed in the very early placode, then became selectively excluded from the placode but not the surrounding epidermis, including hth, grainyhead and tollo/toll-8. We show that maintaining tollo expression severely compromised the tube morphogenesis. We propose tollo is switched off to not interfere with key Tolls/LRRs that are expressed and function in the tube morphogenesis.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 4\",\"pages\":\"e3003133\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003133\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003133","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Single-cell analysis of the early Drosophila salivary gland reveals that morphogenetic control involves both the induction and exclusion of gene expression programs.
How tissue shape and therefore function is encoded by the genome remains in many cases unresolved. The tubes of the salivary glands in the Drosophila embryo start from simple epithelial placodes, specified through the homeotic factors Scr/Hth/Exd. Previous work indicated that early morphogenetic changes are prepatterned by transcriptional changes, but an exhaustive transcriptional blueprint driving physical changes was lacking. We performed single-cell-RNAseq-analysis of FACS-isolated early placodal cells, making up less than 0.4% of cells within the embryo. Differential expression analysis in comparison to epidermal cells analyzed in parallel generated a repertoire of genes highly upregulated within placodal cells prior to morphogenetic changes. Furthermore, clustering and pseudotime analysis of single-cell-sequencing data identified dynamic expression changes along the morphogenetic timeline. Our dataset provides a comprehensive resource for future studies of a simple but highly conserved morphogenetic process of tube morphogenesis. Unexpectedly, we identified a subset of genes that, although initially expressed in the very early placode, then became selectively excluded from the placode but not the surrounding epidermis, including hth, grainyhead and tollo/toll-8. We show that maintaining tollo expression severely compromised the tube morphogenesis. We propose tollo is switched off to not interfere with key Tolls/LRRs that are expressed and function in the tube morphogenesis.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.