{"title":"从基因到途径:硬骨鱼转录组学中精确途径重建的调控基因方法。","authors":"Marcela Herrera, Stefano Vianello, Laurie Mitchell, Zoé Chamot, Catherine Lorin-Nebel, Edith Bonnelye, Natacha Roux, Laurence Besseau, Yann Gibert, Vincent Laudet","doi":"10.1002/jez.b.23299","DOIUrl":null,"url":null,"abstract":"<p><p>Interpreting the vast amounts of data generated by high-throughput sequencing technologies can often present a significant challenge, particularly for non-model organisms. While automated approaches like GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses are widely used, they often lack specificity for non-model organisms. To bridge this gap, we present a manually curated gene list tailored for teleost fish transcriptomics. This resource focuses on key biological processes crucial for understanding teleost fish physiology, development, and adaptation, including hormone signaling, various metabolic pathways, appetite regulation, digestion, gastrointestinal function, vision, ossification, osmoregulation, and pigmentation. Developed through collaborative efforts of specialists in diverse fields, the list prioritizes genes with established roles in teleost physiology, experimental evidence, and conservation across species. This curated list aims to provide researchers with a reliable starting point for transcriptomic analyses, offering a carefully evaluated set of genes relevant to current research priorities. By streamlining the process of gene selection and interpretation, this resource supports the broader teleost fish research community in designing and analyzing studies that investigate molecular responses to developmental and environmental changes. We encourage the scientific community to collaboratively expand and refine this list, ensuring its continued relevance and utility for teleost fish research.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Genes to Pathways: A Curated Gene Approach to Accurate Pathway Reconstruction in Teleost Fish Transcriptomics.\",\"authors\":\"Marcela Herrera, Stefano Vianello, Laurie Mitchell, Zoé Chamot, Catherine Lorin-Nebel, Edith Bonnelye, Natacha Roux, Laurence Besseau, Yann Gibert, Vincent Laudet\",\"doi\":\"10.1002/jez.b.23299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interpreting the vast amounts of data generated by high-throughput sequencing technologies can often present a significant challenge, particularly for non-model organisms. While automated approaches like GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses are widely used, they often lack specificity for non-model organisms. To bridge this gap, we present a manually curated gene list tailored for teleost fish transcriptomics. This resource focuses on key biological processes crucial for understanding teleost fish physiology, development, and adaptation, including hormone signaling, various metabolic pathways, appetite regulation, digestion, gastrointestinal function, vision, ossification, osmoregulation, and pigmentation. Developed through collaborative efforts of specialists in diverse fields, the list prioritizes genes with established roles in teleost physiology, experimental evidence, and conservation across species. This curated list aims to provide researchers with a reliable starting point for transcriptomic analyses, offering a carefully evaluated set of genes relevant to current research priorities. By streamlining the process of gene selection and interpretation, this resource supports the broader teleost fish research community in designing and analyzing studies that investigate molecular responses to developmental and environmental changes. We encourage the scientific community to collaboratively expand and refine this list, ensuring its continued relevance and utility for teleost fish research.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.b.23299\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.b.23299","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
From Genes to Pathways: A Curated Gene Approach to Accurate Pathway Reconstruction in Teleost Fish Transcriptomics.
Interpreting the vast amounts of data generated by high-throughput sequencing technologies can often present a significant challenge, particularly for non-model organisms. While automated approaches like GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses are widely used, they often lack specificity for non-model organisms. To bridge this gap, we present a manually curated gene list tailored for teleost fish transcriptomics. This resource focuses on key biological processes crucial for understanding teleost fish physiology, development, and adaptation, including hormone signaling, various metabolic pathways, appetite regulation, digestion, gastrointestinal function, vision, ossification, osmoregulation, and pigmentation. Developed through collaborative efforts of specialists in diverse fields, the list prioritizes genes with established roles in teleost physiology, experimental evidence, and conservation across species. This curated list aims to provide researchers with a reliable starting point for transcriptomic analyses, offering a carefully evaluated set of genes relevant to current research priorities. By streamlining the process of gene selection and interpretation, this resource supports the broader teleost fish research community in designing and analyzing studies that investigate molecular responses to developmental and environmental changes. We encourage the scientific community to collaboratively expand and refine this list, ensuring its continued relevance and utility for teleost fish research.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.