Maarten J Sarink, Lara Grassi, Aloysius G M Tielens, Annelies Verbon, Margreet C Vos, Wil Goessens, Nikolaos Strepis, Corné H W Klaassen, Jaap J van Hellemond
{"title":"卡斯特棘阿米巴促进环境假单胞菌间质粒转移。","authors":"Maarten J Sarink, Lara Grassi, Aloysius G M Tielens, Annelies Verbon, Margreet C Vos, Wil Goessens, Nikolaos Strepis, Corné H W Klaassen, Jaap J van Hellemond","doi":"10.1002/jobm.70051","DOIUrl":null,"url":null,"abstract":"<p><p>The conditions in which antimicrobial resistance (AMR) genes are transferred in natural environments are poorly understood. Acanthamoeba castellanii (a cosmopolitan environmental amoeba) feeds on bacteria by phagocytosis, which places the consumed bacteria closely together in a food vacuole (phagosome) of the amoeba. This way, amoebae can facilitate genetic exchanges between intra-amoebal bacteria. We studied this phenomenon in the clinically relevant bacteria Pseudomonas oleovorans and Pseudomonas aeruginosa (strain 957). The internalization of both the plasmid donor and recipient bacteria was shown by confocal microscopy. In seven independent experiments, an on average 12-fold increase in transfer of the bla<sub>VIM-2</sub> gene between these two Pseudomonas strains was observed in the presence of A. castellanii compared to its absence. Negligible or no plasmid transfer was observed from P. oleovorans to 18 other investigated strains of P. aeruginosa. AMR gene transfer via plasmids between Pseudomonas species is highly strain-dependent and A. castellanii can substantially enhance plasmid transfer. This process of plasmid transfer might also occur between other bacteria and predatory protozoa, such as amoebae that reside in the gut of humans and animals.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70051"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acanthamoeba castellanii Can Facilitate Plasmid Transfer Between Environmental Pseudomonas spp.\",\"authors\":\"Maarten J Sarink, Lara Grassi, Aloysius G M Tielens, Annelies Verbon, Margreet C Vos, Wil Goessens, Nikolaos Strepis, Corné H W Klaassen, Jaap J van Hellemond\",\"doi\":\"10.1002/jobm.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conditions in which antimicrobial resistance (AMR) genes are transferred in natural environments are poorly understood. Acanthamoeba castellanii (a cosmopolitan environmental amoeba) feeds on bacteria by phagocytosis, which places the consumed bacteria closely together in a food vacuole (phagosome) of the amoeba. This way, amoebae can facilitate genetic exchanges between intra-amoebal bacteria. We studied this phenomenon in the clinically relevant bacteria Pseudomonas oleovorans and Pseudomonas aeruginosa (strain 957). The internalization of both the plasmid donor and recipient bacteria was shown by confocal microscopy. In seven independent experiments, an on average 12-fold increase in transfer of the bla<sub>VIM-2</sub> gene between these two Pseudomonas strains was observed in the presence of A. castellanii compared to its absence. Negligible or no plasmid transfer was observed from P. oleovorans to 18 other investigated strains of P. aeruginosa. AMR gene transfer via plasmids between Pseudomonas species is highly strain-dependent and A. castellanii can substantially enhance plasmid transfer. This process of plasmid transfer might also occur between other bacteria and predatory protozoa, such as amoebae that reside in the gut of humans and animals.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e70051\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.70051\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Acanthamoeba castellanii Can Facilitate Plasmid Transfer Between Environmental Pseudomonas spp.
The conditions in which antimicrobial resistance (AMR) genes are transferred in natural environments are poorly understood. Acanthamoeba castellanii (a cosmopolitan environmental amoeba) feeds on bacteria by phagocytosis, which places the consumed bacteria closely together in a food vacuole (phagosome) of the amoeba. This way, amoebae can facilitate genetic exchanges between intra-amoebal bacteria. We studied this phenomenon in the clinically relevant bacteria Pseudomonas oleovorans and Pseudomonas aeruginosa (strain 957). The internalization of both the plasmid donor and recipient bacteria was shown by confocal microscopy. In seven independent experiments, an on average 12-fold increase in transfer of the blaVIM-2 gene between these two Pseudomonas strains was observed in the presence of A. castellanii compared to its absence. Negligible or no plasmid transfer was observed from P. oleovorans to 18 other investigated strains of P. aeruginosa. AMR gene transfer via plasmids between Pseudomonas species is highly strain-dependent and A. castellanii can substantially enhance plasmid transfer. This process of plasmid transfer might also occur between other bacteria and predatory protozoa, such as amoebae that reside in the gut of humans and animals.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).