揭示CLN7疾病:两个相近的MFSD8/CLN7剪接变体在表型表达中的不同作用

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ana Clara Venier, Sofía Savy, Gerardo Carro, Guillermo Guelbert, Ezequiel Grondona, Norberto Guelbert, Juan Pablo Nicola, Favio Pesaola, Ana Lucía De Paul
{"title":"揭示CLN7疾病:两个相近的MFSD8/CLN7剪接变体在表型表达中的不同作用","authors":"Ana Clara Venier, Sofía Savy, Gerardo Carro, Guillermo Guelbert, Ezequiel Grondona, Norberto Guelbert, Juan Pablo Nicola, Favio Pesaola, Ana Lucía De Paul","doi":"10.1093/hmg/ddaf067","DOIUrl":null,"url":null,"abstract":"<p><p>CLN7 is a lysosomal storage disease caused by pathogenic variants in the MFSD8/CLN7 gene. Typically neurodegenerative, patients present seizures and developmental delay since 2-6 years of age and a rapid psychomotor, verbal, and visual deterioration that leads to premature death. However, 'atypical' cases have also been reported. Although more than 80 DNA variants in the MFSD8/CLN7 gene have been reported, no data about a genotype/phenotype correlation is available. Here, we analyze five 'classical' and 'atypical' CLN7 patients by molecular and computational methods. Four variants have been found: c.103C > T (p.Arg35*, pathogenic), c.1394G > A (p.Arg465Gln, pathogenic), c.863 + 1G > A (likely pathogenic), and c.863 + 4A > G (of uncertain significance). Both splice variants showed altering of the splicing process on a minigene reporter assay. Furthermore, exon 8 was deleted in the MFSD8/CLN7 cDNA of blood samples from two patients carrying the splicing variants, demonstrating their effect. The c.863 + 4A > G variant also showed a residual wildtype MFSD8/CLN7 expression and, thus, explaining the milder phenotype. Finally, a clustered geographical distribution of the c.103C > T and c.863 + 4A > G variants was observed in the northeast and center of Argentina, respectively. Our data confirm the pathogenicity of the c.863 + 1G > A variant and reclassify the c.863 + 4A > G variant as pathogenic by adding experimental data, offering new information for a precise prognosis, and expanding the genetic and epidemiological spectrum of CLN7 in the South American region. Ultimately, we seek to raise awareness about the existence of this pathology in the region to reduce the so-called 'diagnostic odyssey' in pediatric patients.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNRAVELING CLN7 disease: the distinct roles of two close MFSD8/CLN7 splice variants in phenotypic expression.\",\"authors\":\"Ana Clara Venier, Sofía Savy, Gerardo Carro, Guillermo Guelbert, Ezequiel Grondona, Norberto Guelbert, Juan Pablo Nicola, Favio Pesaola, Ana Lucía De Paul\",\"doi\":\"10.1093/hmg/ddaf067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CLN7 is a lysosomal storage disease caused by pathogenic variants in the MFSD8/CLN7 gene. Typically neurodegenerative, patients present seizures and developmental delay since 2-6 years of age and a rapid psychomotor, verbal, and visual deterioration that leads to premature death. However, 'atypical' cases have also been reported. Although more than 80 DNA variants in the MFSD8/CLN7 gene have been reported, no data about a genotype/phenotype correlation is available. Here, we analyze five 'classical' and 'atypical' CLN7 patients by molecular and computational methods. Four variants have been found: c.103C > T (p.Arg35*, pathogenic), c.1394G > A (p.Arg465Gln, pathogenic), c.863 + 1G > A (likely pathogenic), and c.863 + 4A > G (of uncertain significance). Both splice variants showed altering of the splicing process on a minigene reporter assay. Furthermore, exon 8 was deleted in the MFSD8/CLN7 cDNA of blood samples from two patients carrying the splicing variants, demonstrating their effect. The c.863 + 4A > G variant also showed a residual wildtype MFSD8/CLN7 expression and, thus, explaining the milder phenotype. Finally, a clustered geographical distribution of the c.103C > T and c.863 + 4A > G variants was observed in the northeast and center of Argentina, respectively. Our data confirm the pathogenicity of the c.863 + 1G > A variant and reclassify the c.863 + 4A > G variant as pathogenic by adding experimental data, offering new information for a precise prognosis, and expanding the genetic and epidemiological spectrum of CLN7 in the South American region. Ultimately, we seek to raise awareness about the existence of this pathology in the region to reduce the so-called 'diagnostic odyssey' in pediatric patients.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf067\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf067","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CLN7是一种由MFSD8/CLN7基因致病性变异引起的溶酶体贮积病。典型的神经退行性疾病,患者自2-6岁起出现癫痫发作和发育迟缓,精神运动、语言和视觉迅速恶化,导致过早死亡。然而,也报告了“非典型”病例。虽然MFSD8/CLN7基因中有80多个DNA变异被报道,但没有关于基因型/表型相关性的数据。在这里,我们通过分子和计算方法分析了5例“经典”和“非典型”CLN7患者。已发现四种变异:c.103C > T (p.a g35*,致病性)、c.1394G > A (p.a g465gln,致病性)、c.863 + 1G > A(可能致病性)和c.863 + 4A > G(意义不确定)。两个剪接变异体在迷你基因报告试验中显示剪接过程的改变。此外,在两名携带剪接变异体的患者的血液样本中,MFSD8/CLN7 cDNA的外显子8被删除,证明了它们的作用。c.863 + 4A > G变异也显示了残留的野生型MFSD8/CLN7表达,因此解释了较温和的表型。最后,c.103C > T和c.863 + 4A > G变异体分别在阿根廷东北部和中部呈聚集性地理分布。我们的数据通过添加实验数据,确认了c.863 + 1G > A变异的致病性,并将c.863 + 4A > G变异重新分类为致病性,为精确预后提供了新的信息,并扩大了CLN7在南美地区的遗传和流行病学谱。最终,我们试图提高对该地区存在这种病理的认识,以减少儿科患者所谓的“诊断奥德赛”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNRAVELING CLN7 disease: the distinct roles of two close MFSD8/CLN7 splice variants in phenotypic expression.

CLN7 is a lysosomal storage disease caused by pathogenic variants in the MFSD8/CLN7 gene. Typically neurodegenerative, patients present seizures and developmental delay since 2-6 years of age and a rapid psychomotor, verbal, and visual deterioration that leads to premature death. However, 'atypical' cases have also been reported. Although more than 80 DNA variants in the MFSD8/CLN7 gene have been reported, no data about a genotype/phenotype correlation is available. Here, we analyze five 'classical' and 'atypical' CLN7 patients by molecular and computational methods. Four variants have been found: c.103C > T (p.Arg35*, pathogenic), c.1394G > A (p.Arg465Gln, pathogenic), c.863 + 1G > A (likely pathogenic), and c.863 + 4A > G (of uncertain significance). Both splice variants showed altering of the splicing process on a minigene reporter assay. Furthermore, exon 8 was deleted in the MFSD8/CLN7 cDNA of blood samples from two patients carrying the splicing variants, demonstrating their effect. The c.863 + 4A > G variant also showed a residual wildtype MFSD8/CLN7 expression and, thus, explaining the milder phenotype. Finally, a clustered geographical distribution of the c.103C > T and c.863 + 4A > G variants was observed in the northeast and center of Argentina, respectively. Our data confirm the pathogenicity of the c.863 + 1G > A variant and reclassify the c.863 + 4A > G variant as pathogenic by adding experimental data, offering new information for a precise prognosis, and expanding the genetic and epidemiological spectrum of CLN7 in the South American region. Ultimately, we seek to raise awareness about the existence of this pathology in the region to reduce the so-called 'diagnostic odyssey' in pediatric patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信