Maëva Moyne, Manon Durand-Ruel, Chang-Hyun Park, Roberto Salamanca-Giron, Virgine Sterpenich, Sophie Schwartz, Friedhelm C Hummel, Takuya Morishita
{"title":"午睡时纺锤波激发经颅交流电刺激对健康老年人睡眠依赖运动记忆巩固的影响。","authors":"Maëva Moyne, Manon Durand-Ruel, Chang-Hyun Park, Roberto Salamanca-Giron, Virgine Sterpenich, Sophie Schwartz, Friedhelm C Hummel, Takuya Morishita","doi":"10.1093/sleepadvances/zpaf022","DOIUrl":null,"url":null,"abstract":"<p><p>With the increase in life expectancy and the rapid evolution of daily life technologies, older adults must constantly learn new skills to adapt to society. Sleep reinforces skills acquired during the day and is associated with the occurrence of specific oscillations such as spindles. However, with age, spindles deteriorate and thus likely contribute to memory impairments observed in older adults. The application of electric currents by means of transcranial alternating current stimulation (tACS) with spindle-like waveform, applied during the night, was found to enhance spindles and motor memory consolidation in young adults. Here, we tested whether tACS bursts inspired by spindles applied during daytime naps may (i) increase spindle density and (ii) foster motor memory consolidation in older adults. Twenty-six healthy older participants performed a force modulation task at 10:00, were retested at 16:30, and the day after the initial training. They had 90-minute opportunity to take a nap while verum or placebo spindle-inspired tACS bursts were applied with similar temporal parameters to those observed in young adults and independently of natural spindles, which are reduced in the elderly. We show that the density of natural spindles correlates with the magnitude of memory consolidation, thus confirming that spindles are promising physiological targets for enhancing memory consolidation in older adults. However, spindle-inspired tACS, as used in the present study, did not enhance either spindles or memory consolidation. We therefore suggest that applying tACS time-locked to natural spindles might be required to entrain them and improve their related functions.</p>","PeriodicalId":74808,"journal":{"name":"Sleep advances : a journal of the Sleep Research Society","volume":"6 2","pages":"zpaf022"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of spindle-inspired transcranial alternating current stimulation during a nap on sleep-dependent motor memory consolidation in healthy older adults.\",\"authors\":\"Maëva Moyne, Manon Durand-Ruel, Chang-Hyun Park, Roberto Salamanca-Giron, Virgine Sterpenich, Sophie Schwartz, Friedhelm C Hummel, Takuya Morishita\",\"doi\":\"10.1093/sleepadvances/zpaf022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increase in life expectancy and the rapid evolution of daily life technologies, older adults must constantly learn new skills to adapt to society. Sleep reinforces skills acquired during the day and is associated with the occurrence of specific oscillations such as spindles. However, with age, spindles deteriorate and thus likely contribute to memory impairments observed in older adults. The application of electric currents by means of transcranial alternating current stimulation (tACS) with spindle-like waveform, applied during the night, was found to enhance spindles and motor memory consolidation in young adults. Here, we tested whether tACS bursts inspired by spindles applied during daytime naps may (i) increase spindle density and (ii) foster motor memory consolidation in older adults. Twenty-six healthy older participants performed a force modulation task at 10:00, were retested at 16:30, and the day after the initial training. They had 90-minute opportunity to take a nap while verum or placebo spindle-inspired tACS bursts were applied with similar temporal parameters to those observed in young adults and independently of natural spindles, which are reduced in the elderly. We show that the density of natural spindles correlates with the magnitude of memory consolidation, thus confirming that spindles are promising physiological targets for enhancing memory consolidation in older adults. However, spindle-inspired tACS, as used in the present study, did not enhance either spindles or memory consolidation. We therefore suggest that applying tACS time-locked to natural spindles might be required to entrain them and improve their related functions.</p>\",\"PeriodicalId\":74808,\"journal\":{\"name\":\"Sleep advances : a journal of the Sleep Research Society\",\"volume\":\"6 2\",\"pages\":\"zpaf022\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep advances : a journal of the Sleep Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/sleepadvances/zpaf022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep advances : a journal of the Sleep Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/sleepadvances/zpaf022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of spindle-inspired transcranial alternating current stimulation during a nap on sleep-dependent motor memory consolidation in healthy older adults.
With the increase in life expectancy and the rapid evolution of daily life technologies, older adults must constantly learn new skills to adapt to society. Sleep reinforces skills acquired during the day and is associated with the occurrence of specific oscillations such as spindles. However, with age, spindles deteriorate and thus likely contribute to memory impairments observed in older adults. The application of electric currents by means of transcranial alternating current stimulation (tACS) with spindle-like waveform, applied during the night, was found to enhance spindles and motor memory consolidation in young adults. Here, we tested whether tACS bursts inspired by spindles applied during daytime naps may (i) increase spindle density and (ii) foster motor memory consolidation in older adults. Twenty-six healthy older participants performed a force modulation task at 10:00, were retested at 16:30, and the day after the initial training. They had 90-minute opportunity to take a nap while verum or placebo spindle-inspired tACS bursts were applied with similar temporal parameters to those observed in young adults and independently of natural spindles, which are reduced in the elderly. We show that the density of natural spindles correlates with the magnitude of memory consolidation, thus confirming that spindles are promising physiological targets for enhancing memory consolidation in older adults. However, spindle-inspired tACS, as used in the present study, did not enhance either spindles or memory consolidation. We therefore suggest that applying tACS time-locked to natural spindles might be required to entrain them and improve their related functions.