长短期记忆模型预测流感:来自2023-2024年流感季节的结果。

Q3 Medicine
MSMR Pub Date : 2025-04-20
Sneha P Cherukuri, Mark L Bova, Shaylee P Mehta, Christian T Bautista
{"title":"长短期记忆模型预测流感:来自2023-2024年流感季节的结果。","authors":"Sneha P Cherukuri, Mark L Bova, Shaylee P Mehta, Christian T Bautista","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This report assesses the performance of the long short-term memory (LSTM) model, a machine-learning method with potential to improve forecasting accuracy for respiratory disease surveillance, for possible inclusion in future U.S. Department of Defense influenza forecasting analyses. LSTM is a recurrent neural network model that can be used in almost all modeling fields. The LSTM model had the lowest median log-transformed weighted interval score (WIS) for all forecasting horizons: 1 week (0.3), 2 weeks (0.4), and combined 1-2 weeks (0.4). Further research is recommended to determine the performance of the LSTM model for other respiratory infections, including COVID-19.</p>","PeriodicalId":38856,"journal":{"name":"MSMR","volume":"32 4","pages":"29-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forecasting influenza with the long short-term memory model: results from the 2023-2024 influenza season.\",\"authors\":\"Sneha P Cherukuri, Mark L Bova, Shaylee P Mehta, Christian T Bautista\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This report assesses the performance of the long short-term memory (LSTM) model, a machine-learning method with potential to improve forecasting accuracy for respiratory disease surveillance, for possible inclusion in future U.S. Department of Defense influenza forecasting analyses. LSTM is a recurrent neural network model that can be used in almost all modeling fields. The LSTM model had the lowest median log-transformed weighted interval score (WIS) for all forecasting horizons: 1 week (0.3), 2 weeks (0.4), and combined 1-2 weeks (0.4). Further research is recommended to determine the performance of the LSTM model for other respiratory infections, including COVID-19.</p>\",\"PeriodicalId\":38856,\"journal\":{\"name\":\"MSMR\",\"volume\":\"32 4\",\"pages\":\"29-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MSMR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MSMR","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本报告评估了长短期记忆(LSTM)模型的性能,这是一种机器学习方法,有可能提高呼吸系统疾病监测的预测准确性,并可能纳入未来美国国防部的流感预测分析。LSTM是一种可用于几乎所有建模领域的递归神经网络模型。LSTM模型在所有预测范围内具有最低的中位数对数转换加权间隔评分(WIS): 1周(0.3),2周(0.4)和1-2周(0.4)。建议进一步研究以确定LSTM模型在包括COVID-19在内的其他呼吸道感染中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting influenza with the long short-term memory model: results from the 2023-2024 influenza season.

This report assesses the performance of the long short-term memory (LSTM) model, a machine-learning method with potential to improve forecasting accuracy for respiratory disease surveillance, for possible inclusion in future U.S. Department of Defense influenza forecasting analyses. LSTM is a recurrent neural network model that can be used in almost all modeling fields. The LSTM model had the lowest median log-transformed weighted interval score (WIS) for all forecasting horizons: 1 week (0.3), 2 weeks (0.4), and combined 1-2 weeks (0.4). Further research is recommended to determine the performance of the LSTM model for other respiratory infections, including COVID-19.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MSMR
MSMR Medicine-Public Health, Environmental and Occupational Health
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信