Guang-Hui Liu, Fan Wu, Xue-Yan Huo, Hong-Bing Sun, Zhuo-Lin Jin, Yu-Cheng Gu, Da-Le Guo, Yan Zhou
{"title":"喜马拉雅金丝桃多环聚丙烯化酰基间苯三酚。","authors":"Guang-Hui Liu, Fan Wu, Xue-Yan Huo, Hong-Bing Sun, Zhuo-Lin Jin, Yu-Cheng Gu, Da-Le Guo, Yan Zhou","doi":"10.1055/a-2596-3029","DOIUrl":null,"url":null,"abstract":"<p><p>Six previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs) with a vicinal diol moiety (1: -6: ) were isolated from the whole plant of <i>Hypericum himalaicum</i>. Their structures were established through a comprehensive analysis of HRMS and 1D and 2D NMR data, while the absolute configurations were determined using the Mo<sub>2</sub>(OAc)<sub>4</sub>-induced circular dichroism (ICD), ECD, and NMR calculations. Compound 1: attenuated the secretion of NO, TNF-<i>α</i>, and IL-6, downregulated the protein expression of COX-2 and iNOS, and inhibited the release of ROS in LPS-induced RAW264.7 macrophages. Further investigation revealed that the anti-inflammatory effects may be attributed to the inhibition of the NF-<i>κ</i>B and NLRP3 signaling pathways.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polycyclic Polyprenylated Acylphloroglucinols from Hypericum himalaicum.\",\"authors\":\"Guang-Hui Liu, Fan Wu, Xue-Yan Huo, Hong-Bing Sun, Zhuo-Lin Jin, Yu-Cheng Gu, Da-Le Guo, Yan Zhou\",\"doi\":\"10.1055/a-2596-3029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Six previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs) with a vicinal diol moiety (1: -6: ) were isolated from the whole plant of <i>Hypericum himalaicum</i>. Their structures were established through a comprehensive analysis of HRMS and 1D and 2D NMR data, while the absolute configurations were determined using the Mo<sub>2</sub>(OAc)<sub>4</sub>-induced circular dichroism (ICD), ECD, and NMR calculations. Compound 1: attenuated the secretion of NO, TNF-<i>α</i>, and IL-6, downregulated the protein expression of COX-2 and iNOS, and inhibited the release of ROS in LPS-induced RAW264.7 macrophages. Further investigation revealed that the anti-inflammatory effects may be attributed to the inhibition of the NF-<i>κ</i>B and NLRP3 signaling pathways.</p>\",\"PeriodicalId\":20127,\"journal\":{\"name\":\"Planta medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2596-3029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2596-3029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Polycyclic Polyprenylated Acylphloroglucinols from Hypericum himalaicum.
Six previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs) with a vicinal diol moiety (1: -6: ) were isolated from the whole plant of Hypericum himalaicum. Their structures were established through a comprehensive analysis of HRMS and 1D and 2D NMR data, while the absolute configurations were determined using the Mo2(OAc)4-induced circular dichroism (ICD), ECD, and NMR calculations. Compound 1: attenuated the secretion of NO, TNF-α, and IL-6, downregulated the protein expression of COX-2 and iNOS, and inhibited the release of ROS in LPS-induced RAW264.7 macrophages. Further investigation revealed that the anti-inflammatory effects may be attributed to the inhibition of the NF-κB and NLRP3 signaling pathways.
期刊介绍:
Planta Medica is one of the leading international journals in the field of natural products – including marine organisms, fungi as well as micro-organisms – and medicinal plants. Planta Medica accepts original research papers, reviews, minireviews and perspectives from researchers worldwide. The journal publishes 18 issues per year.
The following areas of medicinal plants and natural product research are covered:
-Biological and Pharmacological Activities
-Natural Product Chemistry & Analytical Studies
-Pharmacokinetic Investigations
-Formulation and Delivery Systems of Natural Products.
The journal explicitly encourages the submission of chemically characterized extracts.