Yi Yan, Jueyu Wang, Na Zhao, Daizong Cui, Min Zhao
{"title":"车腥草碱对米黄单胞菌的抑菌作用及其机理。oryzae。","authors":"Yi Yan, Jueyu Wang, Na Zhao, Daizong Cui, Min Zhao","doi":"10.3390/microorganisms13040953","DOIUrl":null,"url":null,"abstract":"<p><p><i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) is a biotrophic bacterial pathogen, which causes devastating bacterial blight disease worldwide. In this study, we thoroughly investigated the antimicrobial effect of the plant-derived extract chelerythrine against <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) and elucidated its mechanism. Chelerythrine is a quaternary ammonium alkaloid with a 2,3,7,8-tetrasubstituted phenanthridine structure, extracted from plants, such as the whole plant of Chelidonium majus, and the roots, stems, and leaves of Macleaya cordata. We found that chelerythrine significantly inhibited the growth of <i>Xoo</i> at a concentration of 1.25 μg/mL. Further experiments revealed that chelerythrine interfered with the division and reproduction of the bacterium, leading to its filamentous growth. Additionally, it increased the permeability of <i>Xoo</i> cell membranes and effectively decreased the pathogenicity of <i>Xoo</i>, including the inhibition of extracellular polysaccharide production, cellulase secretion, and biofilm formation. Chelerythrine induced the accumulation of reactive oxygen species in the bacterium, triggering oxidative stress. The result showed that chelerythrine inhibited the formation of the Z-ring of <i>Xoo</i>, interfered with the synthesis of pyrimidine and purine nucleotides, inhibited DNA damage repair, and inhibited the formation of peptidoglycan and lipid-like A, thus interfering with cell membrane permeability, inhibiting carbohydrate metabolism and phosphorylation of sugars, reducing pathogenicity, and ultimately inhibiting bacterial growth and leading to the destruction or lysis of bacterial cells. Altogether, our results suggest that the antimicrobial effect of chelerythrine on <i>Xoo</i> exhibits multi-target properties. Additionally, its effective inhibitory concentration is low. These findings provide a crucial theoretical basis and guidance for the development of novel and efficient plant-derived antimicrobial compounds.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 4","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029680/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Effect and Mechanism of Chelerythrine on <i>Xanthomonas oryzae</i> pv. <i>oryzae</i>.\",\"authors\":\"Yi Yan, Jueyu Wang, Na Zhao, Daizong Cui, Min Zhao\",\"doi\":\"10.3390/microorganisms13040953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) is a biotrophic bacterial pathogen, which causes devastating bacterial blight disease worldwide. In this study, we thoroughly investigated the antimicrobial effect of the plant-derived extract chelerythrine against <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) and elucidated its mechanism. Chelerythrine is a quaternary ammonium alkaloid with a 2,3,7,8-tetrasubstituted phenanthridine structure, extracted from plants, such as the whole plant of Chelidonium majus, and the roots, stems, and leaves of Macleaya cordata. We found that chelerythrine significantly inhibited the growth of <i>Xoo</i> at a concentration of 1.25 μg/mL. Further experiments revealed that chelerythrine interfered with the division and reproduction of the bacterium, leading to its filamentous growth. Additionally, it increased the permeability of <i>Xoo</i> cell membranes and effectively decreased the pathogenicity of <i>Xoo</i>, including the inhibition of extracellular polysaccharide production, cellulase secretion, and biofilm formation. Chelerythrine induced the accumulation of reactive oxygen species in the bacterium, triggering oxidative stress. The result showed that chelerythrine inhibited the formation of the Z-ring of <i>Xoo</i>, interfered with the synthesis of pyrimidine and purine nucleotides, inhibited DNA damage repair, and inhibited the formation of peptidoglycan and lipid-like A, thus interfering with cell membrane permeability, inhibiting carbohydrate metabolism and phosphorylation of sugars, reducing pathogenicity, and ultimately inhibiting bacterial growth and leading to the destruction or lysis of bacterial cells. Altogether, our results suggest that the antimicrobial effect of chelerythrine on <i>Xoo</i> exhibits multi-target properties. Additionally, its effective inhibitory concentration is low. These findings provide a crucial theoretical basis and guidance for the development of novel and efficient plant-derived antimicrobial compounds.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13040953\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13040953","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antibacterial Effect and Mechanism of Chelerythrine on Xanthomonas oryzae pv. oryzae.
Xanthomonas oryzae pv. oryzae (Xoo) is a biotrophic bacterial pathogen, which causes devastating bacterial blight disease worldwide. In this study, we thoroughly investigated the antimicrobial effect of the plant-derived extract chelerythrine against Xanthomonas oryzae pv. oryzae (Xoo) and elucidated its mechanism. Chelerythrine is a quaternary ammonium alkaloid with a 2,3,7,8-tetrasubstituted phenanthridine structure, extracted from plants, such as the whole plant of Chelidonium majus, and the roots, stems, and leaves of Macleaya cordata. We found that chelerythrine significantly inhibited the growth of Xoo at a concentration of 1.25 μg/mL. Further experiments revealed that chelerythrine interfered with the division and reproduction of the bacterium, leading to its filamentous growth. Additionally, it increased the permeability of Xoo cell membranes and effectively decreased the pathogenicity of Xoo, including the inhibition of extracellular polysaccharide production, cellulase secretion, and biofilm formation. Chelerythrine induced the accumulation of reactive oxygen species in the bacterium, triggering oxidative stress. The result showed that chelerythrine inhibited the formation of the Z-ring of Xoo, interfered with the synthesis of pyrimidine and purine nucleotides, inhibited DNA damage repair, and inhibited the formation of peptidoglycan and lipid-like A, thus interfering with cell membrane permeability, inhibiting carbohydrate metabolism and phosphorylation of sugars, reducing pathogenicity, and ultimately inhibiting bacterial growth and leading to the destruction or lysis of bacterial cells. Altogether, our results suggest that the antimicrobial effect of chelerythrine on Xoo exhibits multi-target properties. Additionally, its effective inhibitory concentration is low. These findings provide a crucial theoretical basis and guidance for the development of novel and efficient plant-derived antimicrobial compounds.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.