OGSE扩散MRI的工程临床翻译。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ante Zhu, Eric S Michael, Hua Li, Tim Sprenger, Yihe Hua, Seung-Kyun Lee, Desmond Teck Beng Yeo, Jennifer A McNab, Franciszek Hennel, Els Fieremans, Dan Wu, Thomas K F Foo, Dmitry S Novikov
{"title":"OGSE扩散MRI的工程临床翻译。","authors":"Ante Zhu, Eric S Michael, Hua Li, Tim Sprenger, Yihe Hua, Seung-Kyun Lee, Desmond Teck Beng Yeo, Jennifer A McNab, Franciszek Hennel, Els Fieremans, Dan Wu, Thomas K F Foo, Dmitry S Novikov","doi":"10.1002/mrm.30510","DOIUrl":null,"url":null,"abstract":"<p><p>Oscillating gradient spin echo (OGSE) diffusion MRI (dMRI) can probe the diffusive dynamics on short time scales ≲10 ms, which translates into the sensitivity to tissue microstructure at the short length scales <math> <semantics><mrow><mo>≲</mo> <mn>10</mn> <mspace></mspace> <mi>μ</mi></mrow> <annotation>$$ \\lesssim 10\\kern0.3em \\upmu $$</annotation></semantics> </math> m. OGSE-based tissue microstructure imaging techniques able to characterize the cell diameter and cellular density have been established in pre-clinical studies. The unique image contrast of OGSE dMRI has been shown to differentiate tumor types and malignancies, enable early diagnosis of treatment effectiveness, and reveal different pathophysiology of lesions in stroke and neurological diseases. Recent innovations in high-performance gradient human MRI systems provide an opportunity to translate OGSE research findings in pre-clinical studies to human research and the clinic. The implementation of OGSE dMRI in human studies has the promise to advance our understanding of human brain microstructure and improve patient care. Compared to the clinical standard (pulsed gradient spin echo), engineering OGSE diffusion encoding for human imaging is more challenging. This review summarizes the impact of hardware and human biophysical safety considerations on the waveform design, imaging parameter space, and image quality of OGSE dMRI. Here we discuss the effects of the gradient amplitude, slew rate, peripheral nerve stimulation, cardiac stimulation, gradient driver, acoustic noise and mechanical vibration, eddy currents, gradient nonlinearity, concomitant gradient, motion and flow, and signal-to-noise ratio. We believe that targeted engineering for safe, high-quality, and reproducible imaging will enable the translation of OGSE dMRI techniques into the clinic.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering clinical translation of OGSE diffusion MRI.\",\"authors\":\"Ante Zhu, Eric S Michael, Hua Li, Tim Sprenger, Yihe Hua, Seung-Kyun Lee, Desmond Teck Beng Yeo, Jennifer A McNab, Franciszek Hennel, Els Fieremans, Dan Wu, Thomas K F Foo, Dmitry S Novikov\",\"doi\":\"10.1002/mrm.30510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oscillating gradient spin echo (OGSE) diffusion MRI (dMRI) can probe the diffusive dynamics on short time scales ≲10 ms, which translates into the sensitivity to tissue microstructure at the short length scales <math> <semantics><mrow><mo>≲</mo> <mn>10</mn> <mspace></mspace> <mi>μ</mi></mrow> <annotation>$$ \\\\lesssim 10\\\\kern0.3em \\\\upmu $$</annotation></semantics> </math> m. OGSE-based tissue microstructure imaging techniques able to characterize the cell diameter and cellular density have been established in pre-clinical studies. The unique image contrast of OGSE dMRI has been shown to differentiate tumor types and malignancies, enable early diagnosis of treatment effectiveness, and reveal different pathophysiology of lesions in stroke and neurological diseases. Recent innovations in high-performance gradient human MRI systems provide an opportunity to translate OGSE research findings in pre-clinical studies to human research and the clinic. The implementation of OGSE dMRI in human studies has the promise to advance our understanding of human brain microstructure and improve patient care. Compared to the clinical standard (pulsed gradient spin echo), engineering OGSE diffusion encoding for human imaging is more challenging. This review summarizes the impact of hardware and human biophysical safety considerations on the waveform design, imaging parameter space, and image quality of OGSE dMRI. Here we discuss the effects of the gradient amplitude, slew rate, peripheral nerve stimulation, cardiac stimulation, gradient driver, acoustic noise and mechanical vibration, eddy currents, gradient nonlinearity, concomitant gradient, motion and flow, and signal-to-noise ratio. We believe that targeted engineering for safe, high-quality, and reproducible imaging will enable the translation of OGSE dMRI techniques into the clinic.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30510\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30510","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

振荡梯度自旋回波(OGSE)扩散MRI (dMRI)可以在短时间尺度(≤10 ms)上探测扩散动力学,从而在短长度尺度(≤10 μ)上对组织微观结构具有灵敏度 $$ \lesssim 10\kern0.3em \upmu $$ m.基于ogse的组织微观结构成像技术能够表征细胞直径和细胞密度,已经在临床前研究中建立。OGSE dMRI独特的图像对比度已被证明可以区分肿瘤类型和恶性肿瘤,能够早期诊断治疗效果,并揭示脑卒中和神经系统疾病病变的不同病理生理。最近在高性能梯度人体MRI系统的创新提供了一个机会,将临床前研究的OGSE研究成果转化为人体研究和临床。在人类研究中实施OGSE dMRI有希望推进我们对人脑微观结构的理解并改善患者护理。与临床标准(脉冲梯度自旋回波)相比,用于人体成像的OGSE扩散编码工程更具挑战性。本文综述了硬件和人体生物物理安全考虑对OGSE dMRI波形设计、成像参数空间和图像质量的影响。本文讨论了梯度幅值、回转率、周围神经刺激、心脏刺激、梯度驱动、噪声和机械振动、涡流、梯度非线性、伴随梯度、运动和流量、信噪比等因素的影响。我们相信,安全、高质量和可重复成像的目标工程将使OGSE dMRI技术转化为临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering clinical translation of OGSE diffusion MRI.

Oscillating gradient spin echo (OGSE) diffusion MRI (dMRI) can probe the diffusive dynamics on short time scales ≲10 ms, which translates into the sensitivity to tissue microstructure at the short length scales 10 μ $$ \lesssim 10\kern0.3em \upmu $$ m. OGSE-based tissue microstructure imaging techniques able to characterize the cell diameter and cellular density have been established in pre-clinical studies. The unique image contrast of OGSE dMRI has been shown to differentiate tumor types and malignancies, enable early diagnosis of treatment effectiveness, and reveal different pathophysiology of lesions in stroke and neurological diseases. Recent innovations in high-performance gradient human MRI systems provide an opportunity to translate OGSE research findings in pre-clinical studies to human research and the clinic. The implementation of OGSE dMRI in human studies has the promise to advance our understanding of human brain microstructure and improve patient care. Compared to the clinical standard (pulsed gradient spin echo), engineering OGSE diffusion encoding for human imaging is more challenging. This review summarizes the impact of hardware and human biophysical safety considerations on the waveform design, imaging parameter space, and image quality of OGSE dMRI. Here we discuss the effects of the gradient amplitude, slew rate, peripheral nerve stimulation, cardiac stimulation, gradient driver, acoustic noise and mechanical vibration, eddy currents, gradient nonlinearity, concomitant gradient, motion and flow, and signal-to-noise ratio. We believe that targeted engineering for safe, high-quality, and reproducible imaging will enable the translation of OGSE dMRI techniques into the clinic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信