破解智能调制热失控电解质新配方提高锂离子电池安全性

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arnab Ghosh, Sunan Tian, Mingyang Zhang, Isaac Lorero Gómez, Qi Chen, Monsur Islam, Bhavika Bhatia, Silvia González Prolongo, Bimlesh Lochab, De-Yi Wang
{"title":"破解智能调制热失控电解质新配方提高锂离子电池安全性","authors":"Arnab Ghosh, Sunan Tian, Mingyang Zhang, Isaac Lorero Gómez, Qi Chen, Monsur Islam, Bhavika Bhatia, Silvia González Prolongo, Bimlesh Lochab, De-Yi Wang","doi":"10.1002/adfm.202502761","DOIUrl":null,"url":null,"abstract":"Thermal runaway remains a persisting challenge that poses a significant risk to lithium-ion battery (LIB) users. In commercial LIBs, thermal runaway is typically controlled using temperature-responsive trilayer polypropylene/polyethylene/polypropylene (PP/PE/PP) separators. However, because of thermal shrinkage at ≈160 °C, these separators often fail to prevent thermal runaway in practical LIBs. Electrolyte engineering is, therefore, crucial to mitigate the risk of thermal runaway in LIBs. In this context, the Diels-Alder click chemistry is being introduced to tackle the thermal runaway issues in LIBs. A thermoresponsive electrolyte is proposed composed of a lithium salt dissolved in vinylene carbonate (VC) and 2,5-dimethylfuran (DMFu) that functions effectively in batteries at room temperature. At high temperatures, VC and DMFu participate in Diels-Alder reactions, forming oligomers that significantly decrease the ionic conductivity of the electrolyte and concurrently occlude the micropores of PP/PE/PP separators. These dual effects enable a two-step intelligent modulation of thermal runaway, with a warning phase activated above 80 °C and a complete thermal shutdown at 120 °C. The thermoresponsive electrolyte formulation deciphered in this study holds great potential for advancing the safety of LIBs through electrolyte engineering.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"28 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering a New Electrolyte Formulation for Intelligent Modulation of Thermal Runaway to Improve the Safety of Lithium-Ion Batteries\",\"authors\":\"Arnab Ghosh, Sunan Tian, Mingyang Zhang, Isaac Lorero Gómez, Qi Chen, Monsur Islam, Bhavika Bhatia, Silvia González Prolongo, Bimlesh Lochab, De-Yi Wang\",\"doi\":\"10.1002/adfm.202502761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal runaway remains a persisting challenge that poses a significant risk to lithium-ion battery (LIB) users. In commercial LIBs, thermal runaway is typically controlled using temperature-responsive trilayer polypropylene/polyethylene/polypropylene (PP/PE/PP) separators. However, because of thermal shrinkage at ≈160 °C, these separators often fail to prevent thermal runaway in practical LIBs. Electrolyte engineering is, therefore, crucial to mitigate the risk of thermal runaway in LIBs. In this context, the Diels-Alder click chemistry is being introduced to tackle the thermal runaway issues in LIBs. A thermoresponsive electrolyte is proposed composed of a lithium salt dissolved in vinylene carbonate (VC) and 2,5-dimethylfuran (DMFu) that functions effectively in batteries at room temperature. At high temperatures, VC and DMFu participate in Diels-Alder reactions, forming oligomers that significantly decrease the ionic conductivity of the electrolyte and concurrently occlude the micropores of PP/PE/PP separators. These dual effects enable a two-step intelligent modulation of thermal runaway, with a warning phase activated above 80 °C and a complete thermal shutdown at 120 °C. The thermoresponsive electrolyte formulation deciphered in this study holds great potential for advancing the safety of LIBs through electrolyte engineering.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202502761\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202502761","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热失控仍然是锂离子电池(LIB)用户面临的一个重大挑战。在商用lib中,通常使用温度响应型三层聚丙烯/聚乙烯/聚丙烯(PP/PE/PP)分离器来控制热失控。然而,由于在≈160°C时的热收缩,这些分离器在实际的lib中往往不能防止热失控。因此,电解质工程对于降低锂离子电池热失控的风险至关重要。在这种情况下,Diels-Alder点击化学被引入来解决lib中的热失控问题。提出了一种由溶解在碳酸乙烯酯(VC)和2,5-二甲基呋喃(DMFu)中的锂盐组成的热响应电解质,该电解质在室温下在电池中有效工作。在高温下,VC和DMFu参与Diels-Alder反应,形成低聚物,显著降低电解质的离子电导率,同时阻塞PP/PE/PP隔膜的微孔。这些双重效应使得热失控的两步智能调制成为可能,在80°C以上启动警告阶段,在120°C时完全热关闭。本研究破译的热响应电解质配方对于通过电解质工程提高lib的安全性具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering a New Electrolyte Formulation for Intelligent Modulation of Thermal Runaway to Improve the Safety of Lithium-Ion Batteries

Deciphering a New Electrolyte Formulation for Intelligent Modulation of Thermal Runaway to Improve the Safety of Lithium-Ion Batteries
Thermal runaway remains a persisting challenge that poses a significant risk to lithium-ion battery (LIB) users. In commercial LIBs, thermal runaway is typically controlled using temperature-responsive trilayer polypropylene/polyethylene/polypropylene (PP/PE/PP) separators. However, because of thermal shrinkage at ≈160 °C, these separators often fail to prevent thermal runaway in practical LIBs. Electrolyte engineering is, therefore, crucial to mitigate the risk of thermal runaway in LIBs. In this context, the Diels-Alder click chemistry is being introduced to tackle the thermal runaway issues in LIBs. A thermoresponsive electrolyte is proposed composed of a lithium salt dissolved in vinylene carbonate (VC) and 2,5-dimethylfuran (DMFu) that functions effectively in batteries at room temperature. At high temperatures, VC and DMFu participate in Diels-Alder reactions, forming oligomers that significantly decrease the ionic conductivity of the electrolyte and concurrently occlude the micropores of PP/PE/PP separators. These dual effects enable a two-step intelligent modulation of thermal runaway, with a warning phase activated above 80 °C and a complete thermal shutdown at 120 °C. The thermoresponsive electrolyte formulation deciphered in this study holds great potential for advancing the safety of LIBs through electrolyte engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信