二维金属卤化物钙钛矿的交流电场诱导可逆光致发光调制

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Su, Haitao Xie, Congzhou Li, Zhongjing Xia, Wenheng Xu, Zilong Mao, Guixiang Zhan, Kan Liao, Jiaqi Li, Jinze Li, Junran Zhang, Yao Yin, Lin Wang
{"title":"二维金属卤化物钙钛矿的交流电场诱导可逆光致发光调制","authors":"Yu Su, Haitao Xie, Congzhou Li, Zhongjing Xia, Wenheng Xu, Zilong Mao, Guixiang Zhan, Kan Liao, Jiaqi Li, Jinze Li, Junran Zhang, Yao Yin, Lin Wang","doi":"10.1002/adfm.202505380","DOIUrl":null,"url":null,"abstract":"2D Ruddlesden-Popper (RP) phase perovskites are promising materials for optoelectronic devices due to their unique properties and environmental stability. In this work, fully electrical, dynamic, and reversible modulation of photoluminescence (PL) intensity in RP-phase perovskite nanosheets at room temperature is achieved for the first time using alternating current (AC) electric fields. A capacitor structure with (PEA)<sub>2</sub>PbI<sub>4</sub> nanosheets and HfO<sub>2</sub> enables significant PL quenching, with the largest modulation amplitude reported to date. The degree of quenching depends on AC field parameters, including amplitude, frequency, waveform, and inter-electrode phase difference. Temperature-dependent measurements and impedance spectroscopy (IS) reveal that the PL quenching originates from an interfacial polarization field formed by AC-driven ionic displacement and directional accumulation, which perturbs exciton recombination. This work provides insights into ion migration and electric field interactions in 2D perovskites. It also establishes an energy-efficient method for tuning optoelectronic properties, offering a practical route for developing adaptive photonic systems and low-power, electrically tunable devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC-Field-Induced Reversible Photoluminescence Modulation in 2D Metal Halide Perovskites\",\"authors\":\"Yu Su, Haitao Xie, Congzhou Li, Zhongjing Xia, Wenheng Xu, Zilong Mao, Guixiang Zhan, Kan Liao, Jiaqi Li, Jinze Li, Junran Zhang, Yao Yin, Lin Wang\",\"doi\":\"10.1002/adfm.202505380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D Ruddlesden-Popper (RP) phase perovskites are promising materials for optoelectronic devices due to their unique properties and environmental stability. In this work, fully electrical, dynamic, and reversible modulation of photoluminescence (PL) intensity in RP-phase perovskite nanosheets at room temperature is achieved for the first time using alternating current (AC) electric fields. A capacitor structure with (PEA)<sub>2</sub>PbI<sub>4</sub> nanosheets and HfO<sub>2</sub> enables significant PL quenching, with the largest modulation amplitude reported to date. The degree of quenching depends on AC field parameters, including amplitude, frequency, waveform, and inter-electrode phase difference. Temperature-dependent measurements and impedance spectroscopy (IS) reveal that the PL quenching originates from an interfacial polarization field formed by AC-driven ionic displacement and directional accumulation, which perturbs exciton recombination. This work provides insights into ion migration and electric field interactions in 2D perovskites. It also establishes an energy-efficient method for tuning optoelectronic properties, offering a practical route for developing adaptive photonic systems and low-power, electrically tunable devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202505380\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202505380","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维Ruddlesden-Popper (RP)相钙钛矿由于其独特的性能和环境稳定性,是一种很有前途的光电子器件材料。在这项工作中,首次利用交流电场实现了室温下rp相钙钛矿纳米片的光致发光(PL)强度的全电、动态和可逆调制。具有(PEA)2PbI4纳米片和HfO2的电容器结构可以实现显著的PL猝灭,具有迄今为止报道的最大调制幅度。淬灭程度取决于交流场参数,包括振幅、频率、波形和电极间相位差。温度相关测量和阻抗谱(IS)表明,PL猝灭源于交流驱动离子位移和定向积累形成的界面极化场,这干扰了激子的重组。这项工作提供了对二维钙钛矿中离子迁移和电场相互作用的见解。它还建立了一种节能的调谐光电特性的方法,为开发自适应光子系统和低功耗、电可调谐器件提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AC-Field-Induced Reversible Photoluminescence Modulation in 2D Metal Halide Perovskites

AC-Field-Induced Reversible Photoluminescence Modulation in 2D Metal Halide Perovskites
2D Ruddlesden-Popper (RP) phase perovskites are promising materials for optoelectronic devices due to their unique properties and environmental stability. In this work, fully electrical, dynamic, and reversible modulation of photoluminescence (PL) intensity in RP-phase perovskite nanosheets at room temperature is achieved for the first time using alternating current (AC) electric fields. A capacitor structure with (PEA)2PbI4 nanosheets and HfO2 enables significant PL quenching, with the largest modulation amplitude reported to date. The degree of quenching depends on AC field parameters, including amplitude, frequency, waveform, and inter-electrode phase difference. Temperature-dependent measurements and impedance spectroscopy (IS) reveal that the PL quenching originates from an interfacial polarization field formed by AC-driven ionic displacement and directional accumulation, which perturbs exciton recombination. This work provides insights into ion migration and electric field interactions in 2D perovskites. It also establishes an energy-efficient method for tuning optoelectronic properties, offering a practical route for developing adaptive photonic systems and low-power, electrically tunable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信