超可溶性1-氮杂苯噻嗪添加剂稳定500wh Kg−1锂金属袋电池的高压licoo2

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Guo, Yajun Hou, Xingkai Wang, Zelin Yang, Qianqiu Tian, Qiujiang Dong, Jinyang Li, He Huang, Wanxing Zhang, Hua Qin, Jun Liu, Bin Shi, Xiaopeng Han, Wenbin Hu
{"title":"超可溶性1-氮杂苯噻嗪添加剂稳定500wh Kg−1锂金属袋电池的高压licoo2","authors":"Hao Guo, Yajun Hou, Xingkai Wang, Zelin Yang, Qianqiu Tian, Qiujiang Dong, Jinyang Li, He Huang, Wanxing Zhang, Hua Qin, Jun Liu, Bin Shi, Xiaopeng Han, Wenbin Hu","doi":"10.1002/adma.202503618","DOIUrl":null,"url":null,"abstract":"High-voltage LiCoO<sub>2</sub> is a promising cathode candidate for achieving high-energy lithium metal pouch cells. However, further application is still hindered by irreversible structural degradation and severe interfacial side reactions that accelerate capacity decay. Herein, 1-Azaphenothiazine (1-APT) is incorporated as a cathode slurry additive (1 g mL<sup>−1</sup> in N-methyl-2-pyrrolidone) to promote the optimization of the LiCoO<sub>2</sub> interface during the electrode coating process. The ultra-soluble 1-APT promotes the formation of inorganic-rich components within the cathode-electrolyte interphase (CEI), mitigates the reaction of Co<sup>4+</sup> with the electrolyte, and enhances the interfacial stability of LiCoO<sub>2</sub>, thereby enabling 4.7 V LiCoO<sub>2</sub> with an initial capacity of 229.8 mAh g<sup>−1</sup> and 73.2% capacity retention after 200 cycles. More importantly, Li||LiCoO<sub>2</sub>-1-APT pouch cells exhibit remarkable electrochemical performance, achieving specific energies of 515.7 , 497.4 , and 484.9 Wh kg<sup>−1</sup> at discharge rates of 0.5C, 1C, and 2C, respectively. Notably, the 5 Ah pouch cell exhibited the capability to maintain an energy density of 411.4 Wh kg<sup>−1</sup> after 100 cycles at 0.5C. This work presents a practical and effective strategy for optimizing cathode interfaces, thereby enabling the stabilization of high-voltage cathodes.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"15 1","pages":"e2503618"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Soluble 1-Azaphenothiazine Additive Stabilizes High-Voltage LiCoO₂ for 500 Wh Kg−1 Lithium Metal Pouch Cells\",\"authors\":\"Hao Guo, Yajun Hou, Xingkai Wang, Zelin Yang, Qianqiu Tian, Qiujiang Dong, Jinyang Li, He Huang, Wanxing Zhang, Hua Qin, Jun Liu, Bin Shi, Xiaopeng Han, Wenbin Hu\",\"doi\":\"10.1002/adma.202503618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-voltage LiCoO<sub>2</sub> is a promising cathode candidate for achieving high-energy lithium metal pouch cells. However, further application is still hindered by irreversible structural degradation and severe interfacial side reactions that accelerate capacity decay. Herein, 1-Azaphenothiazine (1-APT) is incorporated as a cathode slurry additive (1 g mL<sup>−1</sup> in N-methyl-2-pyrrolidone) to promote the optimization of the LiCoO<sub>2</sub> interface during the electrode coating process. The ultra-soluble 1-APT promotes the formation of inorganic-rich components within the cathode-electrolyte interphase (CEI), mitigates the reaction of Co<sup>4+</sup> with the electrolyte, and enhances the interfacial stability of LiCoO<sub>2</sub>, thereby enabling 4.7 V LiCoO<sub>2</sub> with an initial capacity of 229.8 mAh g<sup>−1</sup> and 73.2% capacity retention after 200 cycles. More importantly, Li||LiCoO<sub>2</sub>-1-APT pouch cells exhibit remarkable electrochemical performance, achieving specific energies of 515.7 , 497.4 , and 484.9 Wh kg<sup>−1</sup> at discharge rates of 0.5C, 1C, and 2C, respectively. Notably, the 5 Ah pouch cell exhibited the capability to maintain an energy density of 411.4 Wh kg<sup>−1</sup> after 100 cycles at 0.5C. This work presents a practical and effective strategy for optimizing cathode interfaces, thereby enabling the stabilization of high-voltage cathodes.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"15 1\",\"pages\":\"e2503618\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202503618\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202503618","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高压LiCoO2是实现高能锂金属袋电池的有前途的阴极候选者。然而,不可逆的结构降解和加速容量衰减的严重界面副反应仍然阻碍了进一步的应用。本文将1- azaphenothiazine (1- apt)作为阴极浆液添加剂(1 g mL−1,n -甲基-2-吡咯烷酮)加入到电极涂层过程中,以促进LiCoO2界面的优化。超溶性的1- apt促进了阴极-电解质界面(CEI)内富无机组分的形成,减轻了Co4+与电解质的反应,增强了LiCoO2的界面稳定性,从而使4.7 V LiCoO2具有229.8 mAh g−1的初始容量,200次循环后容量保持率为73.2%。更重要的是,Li||LiCoO2-1-APT袋状电池表现出卓越的电化学性能,在0.5C、1C和2C的放电倍率下,其比能量分别达到515.7、497.4和484.9 Wh kg−1。值得注意的是,5ah袋状电池在0.5℃下循环100次后,能够保持411.4 Wh kg−1的能量密度。这项工作提出了一种实用有效的优化阴极界面的策略,从而实现了高压阴极的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-Soluble 1-Azaphenothiazine Additive Stabilizes High-Voltage LiCoO₂ for 500 Wh Kg−1 Lithium Metal Pouch Cells

Ultra-Soluble 1-Azaphenothiazine Additive Stabilizes High-Voltage LiCoO₂ for 500 Wh Kg−1 Lithium Metal Pouch Cells
High-voltage LiCoO2 is a promising cathode candidate for achieving high-energy lithium metal pouch cells. However, further application is still hindered by irreversible structural degradation and severe interfacial side reactions that accelerate capacity decay. Herein, 1-Azaphenothiazine (1-APT) is incorporated as a cathode slurry additive (1 g mL−1 in N-methyl-2-pyrrolidone) to promote the optimization of the LiCoO2 interface during the electrode coating process. The ultra-soluble 1-APT promotes the formation of inorganic-rich components within the cathode-electrolyte interphase (CEI), mitigates the reaction of Co4+ with the electrolyte, and enhances the interfacial stability of LiCoO2, thereby enabling 4.7 V LiCoO2 with an initial capacity of 229.8 mAh g−1 and 73.2% capacity retention after 200 cycles. More importantly, Li||LiCoO2-1-APT pouch cells exhibit remarkable electrochemical performance, achieving specific energies of 515.7 , 497.4 , and 484.9 Wh kg−1 at discharge rates of 0.5C, 1C, and 2C, respectively. Notably, the 5 Ah pouch cell exhibited the capability to maintain an energy density of 411.4 Wh kg−1 after 100 cycles at 0.5C. This work presents a practical and effective strategy for optimizing cathode interfaces, thereby enabling the stabilization of high-voltage cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信