{"title":"利用光纤传感器解码低堆压下固态锂金属电池化学-机械失效机制","authors":"Guocheng Li, Taolue Zhang, Jiayue Tang, Mingtao Liu, Yizhan Xie, Jingya Yu, Xiaobin Hui, Canbin Deng, Xibin Lu, Yoonseob Kim, Jiaqiang Huang, Zheng-Long Xu","doi":"10.1002/adma.202417770","DOIUrl":null,"url":null,"abstract":"All solid-state lithium (Li) metal batteries (ASSLBs) using ceramic-polymer hybrid solid electrolytes hold the promise for high-performance energy storage application, but they still suffer from the interfacial deterioration and dendritic Li penetration issues, particularly under low stack pressures. Therefore, understanding and mastering the underlying chemo-mechanical failure mechanisms become essential. Herein, the chemo-mechanical evolutions by operando monitoring the amplitude and heterogeneity of interfacial stress through an embedded optical fiber sensor are revealed. It is found that the uneven stripping/deposition of Li metal induces rapid and non-uniform stress growth at the interface, deteriorating interfacial contact with the Li-filament growth. Based on these insights, Li metal is replaced with an architectural lithium-tin anode, which demonstrates uniform stress and improved performance even under low stack pressure. This work not only offers a quantitative way to operando track the uniformity of interfacial stress but also provides critical insights into mastering the chemo-mechanics of ASSLBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 1","pages":"e2417770"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Chemo-Mechanical Failure Mechanisms of Solid-State Lithium Metal Battery Under Low Stack Pressure via Optical Fiber Sensors\",\"authors\":\"Guocheng Li, Taolue Zhang, Jiayue Tang, Mingtao Liu, Yizhan Xie, Jingya Yu, Xiaobin Hui, Canbin Deng, Xibin Lu, Yoonseob Kim, Jiaqiang Huang, Zheng-Long Xu\",\"doi\":\"10.1002/adma.202417770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All solid-state lithium (Li) metal batteries (ASSLBs) using ceramic-polymer hybrid solid electrolytes hold the promise for high-performance energy storage application, but they still suffer from the interfacial deterioration and dendritic Li penetration issues, particularly under low stack pressures. Therefore, understanding and mastering the underlying chemo-mechanical failure mechanisms become essential. Herein, the chemo-mechanical evolutions by operando monitoring the amplitude and heterogeneity of interfacial stress through an embedded optical fiber sensor are revealed. It is found that the uneven stripping/deposition of Li metal induces rapid and non-uniform stress growth at the interface, deteriorating interfacial contact with the Li-filament growth. Based on these insights, Li metal is replaced with an architectural lithium-tin anode, which demonstrates uniform stress and improved performance even under low stack pressure. This work not only offers a quantitative way to operando track the uniformity of interfacial stress but also provides critical insights into mastering the chemo-mechanics of ASSLBs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"35 1\",\"pages\":\"e2417770\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202417770\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417770","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Decoding Chemo-Mechanical Failure Mechanisms of Solid-State Lithium Metal Battery Under Low Stack Pressure via Optical Fiber Sensors
All solid-state lithium (Li) metal batteries (ASSLBs) using ceramic-polymer hybrid solid electrolytes hold the promise for high-performance energy storage application, but they still suffer from the interfacial deterioration and dendritic Li penetration issues, particularly under low stack pressures. Therefore, understanding and mastering the underlying chemo-mechanical failure mechanisms become essential. Herein, the chemo-mechanical evolutions by operando monitoring the amplitude and heterogeneity of interfacial stress through an embedded optical fiber sensor are revealed. It is found that the uneven stripping/deposition of Li metal induces rapid and non-uniform stress growth at the interface, deteriorating interfacial contact with the Li-filament growth. Based on these insights, Li metal is replaced with an architectural lithium-tin anode, which demonstrates uniform stress and improved performance even under low stack pressure. This work not only offers a quantitative way to operando track the uniformity of interfacial stress but also provides critical insights into mastering the chemo-mechanics of ASSLBs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.