近红外光控制动态水凝胶在三维环境中调节机械敏感离子通道。

IF 9.6 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-04-09 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0182
Xiaoning Liu, Zimeng Zhang, Zhanshuo Cao, Hongbo Yuan, Chengfen Xing
{"title":"近红外光控制动态水凝胶在三维环境中调节机械敏感离子通道。","authors":"Xiaoning Liu, Zimeng Zhang, Zhanshuo Cao, Hongbo Yuan, Chengfen Xing","doi":"10.34133/bmr.0182","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca<sup>2+</sup> influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0182"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Light-Controlled Dynamic Hydrogel for Modulating Mechanosensitive Ion Channels in 3-Dimensional Environment.\",\"authors\":\"Xiaoning Liu, Zimeng Zhang, Zhanshuo Cao, Hongbo Yuan, Chengfen Xing\",\"doi\":\"10.34133/bmr.0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca<sup>2+</sup> influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0182\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)为细胞功能创造了一个动态的机械环境,通过机械转导途径持续影响细胞活动。机械敏感离子通道,最近被确定为关键的机械换能器,当它们检测到膜变形时,将机械刺激转化为电或化学信号。这一过程促进了细胞外Ca2+内流、细胞骨架重组和转录调节,所有这些都是细胞生理功能所必需的。在这项研究中,我们开发了一种具有近红外(NIR)光控动态力学性能的纤维水凝胶复合材料(PIC/OEG- nps),通过使用低聚乙二醇(OEG)组装的聚异氰酸酯(PIC)聚合物和OEG接枝的共轭聚合物纳米颗粒(OEG- nps)来调节细胞中的机械敏感离子通道。当加热时,PIC和OEG-NPs通过oeg介导的疏水相互作用组装成PIC/OEG-NPs复合材料。在近红外刺激下,由于其热响应行为,PIC/OEG-NPs复合材料表现出更高的机械张力,形成更紧密的纤维网络。这些变化是可逆的,并且可以通过开关NIR来动态调节机械敏感离子通道,包括转染HEK-293T细胞中的Piezo1和人脐静脉内皮细胞(HUVECs)中的内源性TRPV4。此外,这一过程增强了HUVECs的血管生成潜力。总之,我们提出了一个简单而有效的三维机械敏感离子通道原位调制平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Infrared Light-Controlled Dynamic Hydrogel for Modulating Mechanosensitive Ion Channels in 3-Dimensional Environment.

The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca2+ influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信