Yanping Zhang, Yali Guan, Yongkang Lu, Lin Wang, Yuqing Chen, Manzhu Bao
{"title":"顶部诱导的转录组变化揭示了paspl介导的尖叶Platanus acerifolia植物结构调节。","authors":"Yanping Zhang, Yali Guan, Yongkang Lu, Lin Wang, Yuqing Chen, Manzhu Bao","doi":"10.1007/s11103-025-01580-y","DOIUrl":null,"url":null,"abstract":"<p><p>Plant architecture is one of the most important qualities of Platanus acerifolia Willd., enabling it to be known as \"the king of street trees\". However, there are few reports available on its molecular regulatory mechanisms. Shoot branching is a key process in regulating plant architecture. In this study, topping experiments and transcriptome sequencing analyses were performed to elucidate the molecular mechanisms underlying axillary bud growth and development in P. acerifolia. After 3 d of topping, the axillary buds in P. acerifolia exhibited significant growth, with the trend increasing over subsequent days. The KEGG enrichment analysis revealed considerable changes in the expression levels of genes involved in the auxin signal transduction pathway. Additionally, the expression of most PaSPL genes was downregulated after topping. While Pla-miR156f regulated Arabidopsis plant architecture, flowering transition and flower development, this regulation was not directly influenced by the topping pathway. These results contribute to a better understanding of P. acerifolia plant architecture regulation and provide valuable insights into the regulation of other plants, particularly woody plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"65"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topping-induced transcriptome changes reveal PaSPL-mediated regulation of plant architecture in Platanus acerifolia.\",\"authors\":\"Yanping Zhang, Yali Guan, Yongkang Lu, Lin Wang, Yuqing Chen, Manzhu Bao\",\"doi\":\"10.1007/s11103-025-01580-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant architecture is one of the most important qualities of Platanus acerifolia Willd., enabling it to be known as \\\"the king of street trees\\\". However, there are few reports available on its molecular regulatory mechanisms. Shoot branching is a key process in regulating plant architecture. In this study, topping experiments and transcriptome sequencing analyses were performed to elucidate the molecular mechanisms underlying axillary bud growth and development in P. acerifolia. After 3 d of topping, the axillary buds in P. acerifolia exhibited significant growth, with the trend increasing over subsequent days. The KEGG enrichment analysis revealed considerable changes in the expression levels of genes involved in the auxin signal transduction pathway. Additionally, the expression of most PaSPL genes was downregulated after topping. While Pla-miR156f regulated Arabidopsis plant architecture, flowering transition and flower development, this regulation was not directly influenced by the topping pathway. These results contribute to a better understanding of P. acerifolia plant architecture regulation and provide valuable insights into the regulation of other plants, particularly woody plants.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 3\",\"pages\":\"65\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01580-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01580-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Topping-induced transcriptome changes reveal PaSPL-mediated regulation of plant architecture in Platanus acerifolia.
Plant architecture is one of the most important qualities of Platanus acerifolia Willd., enabling it to be known as "the king of street trees". However, there are few reports available on its molecular regulatory mechanisms. Shoot branching is a key process in regulating plant architecture. In this study, topping experiments and transcriptome sequencing analyses were performed to elucidate the molecular mechanisms underlying axillary bud growth and development in P. acerifolia. After 3 d of topping, the axillary buds in P. acerifolia exhibited significant growth, with the trend increasing over subsequent days. The KEGG enrichment analysis revealed considerable changes in the expression levels of genes involved in the auxin signal transduction pathway. Additionally, the expression of most PaSPL genes was downregulated after topping. While Pla-miR156f regulated Arabidopsis plant architecture, flowering transition and flower development, this regulation was not directly influenced by the topping pathway. These results contribute to a better understanding of P. acerifolia plant architecture regulation and provide valuable insights into the regulation of other plants, particularly woody plants.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.