Neelam Umbreen, Sara Ali, Hasan Sajid, Yasar Ayaz, Shrooq Alsenan, Yunyoung Nam, So Yeon Kim, Muhammad Baber Sial
{"title":"染色体研究实例分割的可扩展深度注意机制。","authors":"Neelam Umbreen, Sara Ali, Hasan Sajid, Yasar Ayaz, Shrooq Alsenan, Yunyoung Nam, So Yeon Kim, Muhammad Baber Sial","doi":"10.1016/j.slast.2025.100306","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosome segmentation in metaphase images is a critical yet challenging task in cytogenetics and genomics due to the inherent complexity, variability in chromosome shapes, and the scarcity of high-quality annotated datasets. This study proposes a robust instance segmentation framework that integrates an automated annotation pipeline with an enhanced deep learning architecture to address these challenges. A novel dataset is introduced, comprising metaphase images and corresponding karyograms, annotated with precise instance segmentation information across 24 chromosome classes in COCO format. To overcome the labor-intensive manual annotation process, a feature-based image registration technique leveraging SIFT and homography is employed, enabling the accurate mapping of chromosomes from karyograms to metaphase images and significantly improving annotation quality and segmentation performance. The proposed framework includes a custom Mask R-CNN model enhanced with an Attention-based Feature Pyramid Network (AttFPN), spatial attention mechanisms, and a LastLevelMaxPool block for superior multi-scale feature extraction and focused attention on critical regions of the image. Experimental evaluations demonstrate the model's efficacy, achieving a mean average precision (mAP) of 0.579 at IoU = 0.50:0.95, surpassing the baseline Mask R-CNN and Mask R-CNN with AttFPN by 3.94% and 5.97% improvements in mAP and AP50, respectively. Notably, the proposed architecture excels in segmenting small and medium-sized chromosomes, addressing key limitations of existing methods. This research not only introduces a state-of-the-art segmentation framework but also provides a benchmark dataset, setting a new standard for chromosome instance segmentation in biomedical imaging. The integration of automated dataset creation with advanced model design offers a scalable and transferable solution, paving the way for tackling similar challenges in other domains of biomedical and cytogenetic imaging.</p>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":" ","pages":"100306"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Deep Attention Mechanism of Instance Segmentation for the Investigation of Chromosome.\",\"authors\":\"Neelam Umbreen, Sara Ali, Hasan Sajid, Yasar Ayaz, Shrooq Alsenan, Yunyoung Nam, So Yeon Kim, Muhammad Baber Sial\",\"doi\":\"10.1016/j.slast.2025.100306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromosome segmentation in metaphase images is a critical yet challenging task in cytogenetics and genomics due to the inherent complexity, variability in chromosome shapes, and the scarcity of high-quality annotated datasets. This study proposes a robust instance segmentation framework that integrates an automated annotation pipeline with an enhanced deep learning architecture to address these challenges. A novel dataset is introduced, comprising metaphase images and corresponding karyograms, annotated with precise instance segmentation information across 24 chromosome classes in COCO format. To overcome the labor-intensive manual annotation process, a feature-based image registration technique leveraging SIFT and homography is employed, enabling the accurate mapping of chromosomes from karyograms to metaphase images and significantly improving annotation quality and segmentation performance. The proposed framework includes a custom Mask R-CNN model enhanced with an Attention-based Feature Pyramid Network (AttFPN), spatial attention mechanisms, and a LastLevelMaxPool block for superior multi-scale feature extraction and focused attention on critical regions of the image. Experimental evaluations demonstrate the model's efficacy, achieving a mean average precision (mAP) of 0.579 at IoU = 0.50:0.95, surpassing the baseline Mask R-CNN and Mask R-CNN with AttFPN by 3.94% and 5.97% improvements in mAP and AP50, respectively. Notably, the proposed architecture excels in segmenting small and medium-sized chromosomes, addressing key limitations of existing methods. This research not only introduces a state-of-the-art segmentation framework but also provides a benchmark dataset, setting a new standard for chromosome instance segmentation in biomedical imaging. The integration of automated dataset creation with advanced model design offers a scalable and transferable solution, paving the way for tackling similar challenges in other domains of biomedical and cytogenetic imaging.</p>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\" \",\"pages\":\"100306\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.slast.2025.100306\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.slast.2025.100306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Scalable Deep Attention Mechanism of Instance Segmentation for the Investigation of Chromosome.
Chromosome segmentation in metaphase images is a critical yet challenging task in cytogenetics and genomics due to the inherent complexity, variability in chromosome shapes, and the scarcity of high-quality annotated datasets. This study proposes a robust instance segmentation framework that integrates an automated annotation pipeline with an enhanced deep learning architecture to address these challenges. A novel dataset is introduced, comprising metaphase images and corresponding karyograms, annotated with precise instance segmentation information across 24 chromosome classes in COCO format. To overcome the labor-intensive manual annotation process, a feature-based image registration technique leveraging SIFT and homography is employed, enabling the accurate mapping of chromosomes from karyograms to metaphase images and significantly improving annotation quality and segmentation performance. The proposed framework includes a custom Mask R-CNN model enhanced with an Attention-based Feature Pyramid Network (AttFPN), spatial attention mechanisms, and a LastLevelMaxPool block for superior multi-scale feature extraction and focused attention on critical regions of the image. Experimental evaluations demonstrate the model's efficacy, achieving a mean average precision (mAP) of 0.579 at IoU = 0.50:0.95, surpassing the baseline Mask R-CNN and Mask R-CNN with AttFPN by 3.94% and 5.97% improvements in mAP and AP50, respectively. Notably, the proposed architecture excels in segmenting small and medium-sized chromosomes, addressing key limitations of existing methods. This research not only introduces a state-of-the-art segmentation framework but also provides a benchmark dataset, setting a new standard for chromosome instance segmentation in biomedical imaging. The integration of automated dataset creation with advanced model design offers a scalable and transferable solution, paving the way for tackling similar challenges in other domains of biomedical and cytogenetic imaging.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.