{"title":"PROTEUS:一个物理逼真的对比增强超声模拟器-第二部分:成像应用。","authors":"Baptiste Heiles;Nathan Blanken;Alina Kuliesh;Michel Versluis;Kartik Jain;Guillaume Lajoinie;David Maresca","doi":"10.1109/TUFFC.2025.3566437","DOIUrl":null,"url":null,"abstract":"The development of new imaging paradigms in the field of contrast-enhanced ultrasound (CEUS) is hindered by the difficulty to control complex experimental variables in a laboratory setting, such as vascular geometries, nonlinear ultrasound wave propagation in tissue, or microbubble positions within vessels as a function of time. This development would greatly benefit from the ability to control and reproduce independently these conditions in a simulated environment. Here, we report a physically realistic CEUS simulator, PROTEUS, that generates synthetic contrast-enhanced radio frequency (RF) data. In this article, we show that PROTEUS enables flexible investigations of imaging parameters on CEUS, including innovative transducer architecture, such as row-column addressed arrays, microbubble size distribution, pulse sequences, and vascular geometry. We demonstrate how PROTEUS can emulate various 2-D and 3-D imaging modes, such as pulse inversion (PI) or amplitude modulation (AM), echo particle image velocimetry (PIV), or ultrasound localization microscopy (ULM). Finally, in an investigative simulation case study, we evaluate the impact of microbubble size distribution on ULM on a simulated set of 15000 frames. It is released as an open-source tool for the scientific community.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 7","pages":"866-878"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator—Part II: Imaging Applications\",\"authors\":\"Baptiste Heiles;Nathan Blanken;Alina Kuliesh;Michel Versluis;Kartik Jain;Guillaume Lajoinie;David Maresca\",\"doi\":\"10.1109/TUFFC.2025.3566437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of new imaging paradigms in the field of contrast-enhanced ultrasound (CEUS) is hindered by the difficulty to control complex experimental variables in a laboratory setting, such as vascular geometries, nonlinear ultrasound wave propagation in tissue, or microbubble positions within vessels as a function of time. This development would greatly benefit from the ability to control and reproduce independently these conditions in a simulated environment. Here, we report a physically realistic CEUS simulator, PROTEUS, that generates synthetic contrast-enhanced radio frequency (RF) data. In this article, we show that PROTEUS enables flexible investigations of imaging parameters on CEUS, including innovative transducer architecture, such as row-column addressed arrays, microbubble size distribution, pulse sequences, and vascular geometry. We demonstrate how PROTEUS can emulate various 2-D and 3-D imaging modes, such as pulse inversion (PI) or amplitude modulation (AM), echo particle image velocimetry (PIV), or ultrasound localization microscopy (ULM). Finally, in an investigative simulation case study, we evaluate the impact of microbubble size distribution on ULM on a simulated set of 15000 frames. It is released as an open-source tool for the scientific community.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"72 7\",\"pages\":\"866-878\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11002619/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11002619/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator—Part II: Imaging Applications
The development of new imaging paradigms in the field of contrast-enhanced ultrasound (CEUS) is hindered by the difficulty to control complex experimental variables in a laboratory setting, such as vascular geometries, nonlinear ultrasound wave propagation in tissue, or microbubble positions within vessels as a function of time. This development would greatly benefit from the ability to control and reproduce independently these conditions in a simulated environment. Here, we report a physically realistic CEUS simulator, PROTEUS, that generates synthetic contrast-enhanced radio frequency (RF) data. In this article, we show that PROTEUS enables flexible investigations of imaging parameters on CEUS, including innovative transducer architecture, such as row-column addressed arrays, microbubble size distribution, pulse sequences, and vascular geometry. We demonstrate how PROTEUS can emulate various 2-D and 3-D imaging modes, such as pulse inversion (PI) or amplitude modulation (AM), echo particle image velocimetry (PIV), or ultrasound localization microscopy (ULM). Finally, in an investigative simulation case study, we evaluate the impact of microbubble size distribution on ULM on a simulated set of 15000 frames. It is released as an open-source tool for the scientific community.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.