{"title":"短期热胁迫对玉米根虫耐热性的影响。","authors":"Jamieson C Botsch, Jesse D Daniels, Karl A Roeder","doi":"10.1093/jisesa/ieaf043","DOIUrl":null,"url":null,"abstract":"<p><p>Insect responses to warming temperatures are determined partly by their physiology, which is influenced by genetic factors and plasticity induced by past temperature exposure. The effect that prior high temperature exposure has on insect thermal tolerance is complex and depends on the degree of heat stress experienced; high heat exposure may allow for individuals to tolerate higher temperatures through hardening or may reduce an individual's capacity to withstand higher temperatures through accumulated heat stress. In this study, we assessed how short exposures to high temperatures and a laboratory colony's geographical origin affected the critical thermal maximum (CTmax) of western corn rootworm (Diabrotica virgifera virgifera LeConte), an economically important pest. Despite a wide latitudinal range of source populations, western corn rootworm colonies did not differ in their CTmax. Regardless of colony origin, we found that exposing western corn rootworm to higher temperatures resulted in lower CTmax, which suggests that heat stress accumulated. This study highlights how western corn rootworm experiences heat stress at temperatures near the temperatures they experience in the field, which may have important and currently unknown implications for its behavior.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of short-term heat stress on the thermal tolerance of western corn rootworm (Coleoptera: Chrysomelidae).\",\"authors\":\"Jamieson C Botsch, Jesse D Daniels, Karl A Roeder\",\"doi\":\"10.1093/jisesa/ieaf043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insect responses to warming temperatures are determined partly by their physiology, which is influenced by genetic factors and plasticity induced by past temperature exposure. The effect that prior high temperature exposure has on insect thermal tolerance is complex and depends on the degree of heat stress experienced; high heat exposure may allow for individuals to tolerate higher temperatures through hardening or may reduce an individual's capacity to withstand higher temperatures through accumulated heat stress. In this study, we assessed how short exposures to high temperatures and a laboratory colony's geographical origin affected the critical thermal maximum (CTmax) of western corn rootworm (Diabrotica virgifera virgifera LeConte), an economically important pest. Despite a wide latitudinal range of source populations, western corn rootworm colonies did not differ in their CTmax. Regardless of colony origin, we found that exposing western corn rootworm to higher temperatures resulted in lower CTmax, which suggests that heat stress accumulated. This study highlights how western corn rootworm experiences heat stress at temperatures near the temperatures they experience in the field, which may have important and currently unknown implications for its behavior.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieaf043\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf043","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Effects of short-term heat stress on the thermal tolerance of western corn rootworm (Coleoptera: Chrysomelidae).
Insect responses to warming temperatures are determined partly by their physiology, which is influenced by genetic factors and plasticity induced by past temperature exposure. The effect that prior high temperature exposure has on insect thermal tolerance is complex and depends on the degree of heat stress experienced; high heat exposure may allow for individuals to tolerate higher temperatures through hardening or may reduce an individual's capacity to withstand higher temperatures through accumulated heat stress. In this study, we assessed how short exposures to high temperatures and a laboratory colony's geographical origin affected the critical thermal maximum (CTmax) of western corn rootworm (Diabrotica virgifera virgifera LeConte), an economically important pest. Despite a wide latitudinal range of source populations, western corn rootworm colonies did not differ in their CTmax. Regardless of colony origin, we found that exposing western corn rootworm to higher temperatures resulted in lower CTmax, which suggests that heat stress accumulated. This study highlights how western corn rootworm experiences heat stress at temperatures near the temperatures they experience in the field, which may have important and currently unknown implications for its behavior.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.