比较转录组分析揭示高蛋白日粮对家蚕中肠的影响。

IF 2.7 2区 农林科学 Q1 ENTOMOLOGY
Insects Pub Date : 2025-03-24 DOI:10.3390/insects16040337
Xinyi Chen, Jiahao Li, Yuxi Shan, Qiaoling Wang, Pingzhen Xu, Heying Qian, Yangchun Wu
{"title":"比较转录组分析揭示高蛋白日粮对家蚕中肠的影响。","authors":"Xinyi Chen, Jiahao Li, Yuxi Shan, Qiaoling Wang, Pingzhen Xu, Heying Qian, Yangchun Wu","doi":"10.3390/insects16040337","DOIUrl":null,"url":null,"abstract":"<p><p>The silkworm is a species within the order Lepidoptera and an economic insect. The nutrients are obtained from the leaf and utilized by the silkworm larvae for body growth, development, and cocoon formation. Protein plays a significant functional role in the diet of silkworms. To investigate the impact of the high-protein diet (HPD 6%) on silkworm growth and development, transcriptomic analysis was conducted on the silkworm midgut, and 1724 differentially expressed genes (DEGs) were identified, comprising 803 up-regulated genes and 921 down-regulated genes. The up-regulated genes exhibited the majority pathway of mitochondrial oxidative phosphorylation, ribosome, and ribosome biogenesis in eukaryotes. The down-regulated genes of DEGs were mostly annotated in ABC transporters, lysosome, endocytosis, and sphingolipid metabolism pathways. The comprehensive analysis of DEGs indicated that substantial modifications were observed in various pathways associated with crucial biological processes. HPD 6% decreased oxidative stress and increased mitochondrial activity, ribosomal activity, and DNA repair capacity. Additionally, the ATP levels were increased in the midgut, malpighian tubule, middle silk gland, and posterior silk gland of the HPD 6% group. Moreover, the activities of SOD and NADH were enhanced in the midgut of the HPD 6% group. Our findings provide valuable insights into the wide-ranging effects of an HPD treatment in insects such as silkworms.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Transcriptome Analysis Reveals the Effects of a High-Protein Diet on Silkworm Midgut.\",\"authors\":\"Xinyi Chen, Jiahao Li, Yuxi Shan, Qiaoling Wang, Pingzhen Xu, Heying Qian, Yangchun Wu\",\"doi\":\"10.3390/insects16040337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The silkworm is a species within the order Lepidoptera and an economic insect. The nutrients are obtained from the leaf and utilized by the silkworm larvae for body growth, development, and cocoon formation. Protein plays a significant functional role in the diet of silkworms. To investigate the impact of the high-protein diet (HPD 6%) on silkworm growth and development, transcriptomic analysis was conducted on the silkworm midgut, and 1724 differentially expressed genes (DEGs) were identified, comprising 803 up-regulated genes and 921 down-regulated genes. The up-regulated genes exhibited the majority pathway of mitochondrial oxidative phosphorylation, ribosome, and ribosome biogenesis in eukaryotes. The down-regulated genes of DEGs were mostly annotated in ABC transporters, lysosome, endocytosis, and sphingolipid metabolism pathways. The comprehensive analysis of DEGs indicated that substantial modifications were observed in various pathways associated with crucial biological processes. HPD 6% decreased oxidative stress and increased mitochondrial activity, ribosomal activity, and DNA repair capacity. Additionally, the ATP levels were increased in the midgut, malpighian tubule, middle silk gland, and posterior silk gland of the HPD 6% group. Moreover, the activities of SOD and NADH were enhanced in the midgut of the HPD 6% group. Our findings provide valuable insights into the wide-ranging effects of an HPD treatment in insects such as silkworms.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16040337\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16040337","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蚕是鳞翅目的一种,是一种经济昆虫。蚕蛹从蚕叶中获取营养物质,用于身体的生长、发育和茧的形成。蛋白质在家蚕的日粮中起着重要的功能作用。为研究高蛋白饲粮(HPD 6%)对家蚕生长发育的影响,对家蚕中肠进行转录组学分析,鉴定出1724个差异表达基因(deg),其中上调基因803个,下调基因921个。上调基因在真核生物中表现出线粒体氧化磷酸化、核糖体和核糖体生物发生的主要途径。DEGs的下调基因主要在ABC转运体、溶酶体、内吞作用和鞘脂代谢途径中被注释。对deg的综合分析表明,在与关键生物过程相关的各种途径中观察到实质性的改变。HPD 6%降低氧化应激,增加线粒体活性、核糖体活性和DNA修复能力。此外,HPD 6%组中肠、马尔比氏小管、中丝腺和后丝腺的ATP水平升高。此外,HPD 6%组中肠SOD和NADH活性增强。我们的发现为HPD治疗对昆虫(如蚕)的广泛影响提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Transcriptome Analysis Reveals the Effects of a High-Protein Diet on Silkworm Midgut.

The silkworm is a species within the order Lepidoptera and an economic insect. The nutrients are obtained from the leaf and utilized by the silkworm larvae for body growth, development, and cocoon formation. Protein plays a significant functional role in the diet of silkworms. To investigate the impact of the high-protein diet (HPD 6%) on silkworm growth and development, transcriptomic analysis was conducted on the silkworm midgut, and 1724 differentially expressed genes (DEGs) were identified, comprising 803 up-regulated genes and 921 down-regulated genes. The up-regulated genes exhibited the majority pathway of mitochondrial oxidative phosphorylation, ribosome, and ribosome biogenesis in eukaryotes. The down-regulated genes of DEGs were mostly annotated in ABC transporters, lysosome, endocytosis, and sphingolipid metabolism pathways. The comprehensive analysis of DEGs indicated that substantial modifications were observed in various pathways associated with crucial biological processes. HPD 6% decreased oxidative stress and increased mitochondrial activity, ribosomal activity, and DNA repair capacity. Additionally, the ATP levels were increased in the midgut, malpighian tubule, middle silk gland, and posterior silk gland of the HPD 6% group. Moreover, the activities of SOD and NADH were enhanced in the midgut of the HPD 6% group. Our findings provide valuable insights into the wide-ranging effects of an HPD treatment in insects such as silkworms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insects
Insects Agricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍: Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信