Nourhan Hussien Hassan, Gehan M Kamel, Hany M Fayed, Reda M S Korany, Amer Ramadan
{"title":"达格列净通过调控Nrf2/HO-1和TLR4/TGF-β1/PI3K信号通路减轻硫代乙酰胺诱导的大鼠肝纤维化。","authors":"Nourhan Hussien Hassan, Gehan M Kamel, Hany M Fayed, Reda M S Korany, Amer Ramadan","doi":"10.1080/08923973.2025.2496661","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Because liver fibrosis causes several insults that can result in death, it is regarded as an epidemic health issue. As \"an inhibitor of the sodium-glucose cotransporter-2 (SGLT2),\" Dapagliflozin (Dapa) is one of the newest anti-diabetic drugs used to treat type 2 diabetes mellitus. Dapa's antioxidant, anti-inflammatory, and antifibrotic properties produced positive impacts in numerous human and animal models. Due to Dapa's previously documented properties, we planned this investigation to elucidate the protective function of Dapa in male rat liver fibrosis caused by thioacetamide (TAA) as well as the expected pathways.</p><p><strong>Methods: </strong>There were four groups of 24 rats: a control group, a TAA group that received (100 mg/kg b.wt intraperitoneally twice a week for 6 weeks), \"TAA + Dapa\" groups that given oral Dapa at (1 and 2 mg/kg b.wt. for 4 weeks in addition to TAA injections).</p><p><strong>Results: </strong>It was shown that TAA injections increased toll-like receptor 4 (TLR4) (509.6%), tumor necrosis factor (TNF-<i>α</i>) (298.8%), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin-6 (IL-6) (330.9%), phosphotidylinositol-3-kinase (PI3K) (428.9% %), and transforming growth factor-beta (TGF-<i>β</i>1) (416.6%) levels. All of these markers were considerably reduced by Dapa treatment. In addition, reduced glutathione (GSH), nuclear factor erythroid 2-related factor 2 (Nrf2) (79%), albumin, Heme-oxygenase 1 (HO-1) (69%), and superoxide dismutase (SOD) were all decreased after TAA injection; however, they were restored by Dapa administration. The Dapa-treated groups had higher Nrf2 and HO-1 gene expressions, based on the results of PCR. Biochemical outcomes were validated by histopathological results. Immunohistopathological study revealed that DAPA treatment decreased caspase-3 and alpha-smooth Muscle Actin (<i>α</i>SMA) expression.</p><p><strong>Conclusion: </strong>Due to its interactions with the Nrf2/HO-1 and TLR4 pathways, our research showed that Dapa had antioxidant and anti-inflammatory qualities against TAA-induced liver fibrosis.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-14"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin alleviates thioacetamide induced-liver fibrosis in rats via controlling the Nrf2/HO-1 and TLR4/TGF-β1/PI3K signaling pathways.\",\"authors\":\"Nourhan Hussien Hassan, Gehan M Kamel, Hany M Fayed, Reda M S Korany, Amer Ramadan\",\"doi\":\"10.1080/08923973.2025.2496661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Because liver fibrosis causes several insults that can result in death, it is regarded as an epidemic health issue. As \\\"an inhibitor of the sodium-glucose cotransporter-2 (SGLT2),\\\" Dapagliflozin (Dapa) is one of the newest anti-diabetic drugs used to treat type 2 diabetes mellitus. Dapa's antioxidant, anti-inflammatory, and antifibrotic properties produced positive impacts in numerous human and animal models. Due to Dapa's previously documented properties, we planned this investigation to elucidate the protective function of Dapa in male rat liver fibrosis caused by thioacetamide (TAA) as well as the expected pathways.</p><p><strong>Methods: </strong>There were four groups of 24 rats: a control group, a TAA group that received (100 mg/kg b.wt intraperitoneally twice a week for 6 weeks), \\\"TAA + Dapa\\\" groups that given oral Dapa at (1 and 2 mg/kg b.wt. for 4 weeks in addition to TAA injections).</p><p><strong>Results: </strong>It was shown that TAA injections increased toll-like receptor 4 (TLR4) (509.6%), tumor necrosis factor (TNF-<i>α</i>) (298.8%), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin-6 (IL-6) (330.9%), phosphotidylinositol-3-kinase (PI3K) (428.9% %), and transforming growth factor-beta (TGF-<i>β</i>1) (416.6%) levels. All of these markers were considerably reduced by Dapa treatment. In addition, reduced glutathione (GSH), nuclear factor erythroid 2-related factor 2 (Nrf2) (79%), albumin, Heme-oxygenase 1 (HO-1) (69%), and superoxide dismutase (SOD) were all decreased after TAA injection; however, they were restored by Dapa administration. The Dapa-treated groups had higher Nrf2 and HO-1 gene expressions, based on the results of PCR. Biochemical outcomes were validated by histopathological results. Immunohistopathological study revealed that DAPA treatment decreased caspase-3 and alpha-smooth Muscle Actin (<i>α</i>SMA) expression.</p><p><strong>Conclusion: </strong>Due to its interactions with the Nrf2/HO-1 and TLR4 pathways, our research showed that Dapa had antioxidant and anti-inflammatory qualities against TAA-induced liver fibrosis.</p>\",\"PeriodicalId\":13420,\"journal\":{\"name\":\"Immunopharmacology and Immunotoxicology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunopharmacology and Immunotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08923973.2025.2496661\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2025.2496661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Dapagliflozin alleviates thioacetamide induced-liver fibrosis in rats via controlling the Nrf2/HO-1 and TLR4/TGF-β1/PI3K signaling pathways.
Objectives: Because liver fibrosis causes several insults that can result in death, it is regarded as an epidemic health issue. As "an inhibitor of the sodium-glucose cotransporter-2 (SGLT2)," Dapagliflozin (Dapa) is one of the newest anti-diabetic drugs used to treat type 2 diabetes mellitus. Dapa's antioxidant, anti-inflammatory, and antifibrotic properties produced positive impacts in numerous human and animal models. Due to Dapa's previously documented properties, we planned this investigation to elucidate the protective function of Dapa in male rat liver fibrosis caused by thioacetamide (TAA) as well as the expected pathways.
Methods: There were four groups of 24 rats: a control group, a TAA group that received (100 mg/kg b.wt intraperitoneally twice a week for 6 weeks), "TAA + Dapa" groups that given oral Dapa at (1 and 2 mg/kg b.wt. for 4 weeks in addition to TAA injections).
Results: It was shown that TAA injections increased toll-like receptor 4 (TLR4) (509.6%), tumor necrosis factor (TNF-α) (298.8%), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin-6 (IL-6) (330.9%), phosphotidylinositol-3-kinase (PI3K) (428.9% %), and transforming growth factor-beta (TGF-β1) (416.6%) levels. All of these markers were considerably reduced by Dapa treatment. In addition, reduced glutathione (GSH), nuclear factor erythroid 2-related factor 2 (Nrf2) (79%), albumin, Heme-oxygenase 1 (HO-1) (69%), and superoxide dismutase (SOD) were all decreased after TAA injection; however, they were restored by Dapa administration. The Dapa-treated groups had higher Nrf2 and HO-1 gene expressions, based on the results of PCR. Biochemical outcomes were validated by histopathological results. Immunohistopathological study revealed that DAPA treatment decreased caspase-3 and alpha-smooth Muscle Actin (αSMA) expression.
Conclusion: Due to its interactions with the Nrf2/HO-1 and TLR4 pathways, our research showed that Dapa had antioxidant and anti-inflammatory qualities against TAA-induced liver fibrosis.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).