用概率方法改进土地应用生物固体的风险评估。

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
J Derek Sain, Paul Wiegand, Brad Barnhart, Camille Flinders
{"title":"用概率方法改进土地应用生物固体的风险评估。","authors":"J Derek Sain, Paul Wiegand, Brad Barnhart, Camille Flinders","doi":"10.1093/inteam/vjaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Land application of municipal and industrial wastewater biosolids for use as a fertilizer or soil conditioner is a common practice in the United States. Regulations are in place to reduce pathogens, minimize disease vectors, and limit concentrations of nutrients and some metals, but extensive assessment of the risk of biosolids-associated chemicals to human health and environmental systems is uncommon. Recently, the United States Environmental Protection Agency developed the Biosolids Tool (BST) to facilitate more comprehensive chemical risk assessment of land-applied biosolids based on a deterministic approach that utilizes conservative model inputs without regard for the variability and uncertainty inherent in environmental exposures. Management decisions based on probabilistic risk assessment (PRA), in which variability and uncertainty are quantified and risk is linked to specific population segments, may provide a more accurate understanding of risk. We examined the sediment risk assessment literature and explored the application of probabilistic model inputs within the BST to better understand how deterministic (DRA) and probabilistic (PRA) risk assessment methods compare for characterizing risk. The BST model results for noncancer and cancer risk outcomes associated with total ingestion of aluminum and benzo(a)pyrene in biosolids applied to pastureland for an adult and child indicated that PRA provides a more nuanced understanding of risk than the traditionally used deterministic approach. Receptor-specific risk patterns, model sensitivity, and risk drivers are discussed. Findings underscore the need for incorporating probabilistic methods into regulatory frameworks to improve the accuracy and reliability of risk assessments for biosolids land application.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Risk Assessment of Land-Applied Biosolids with Probabilistic Approaches.\",\"authors\":\"J Derek Sain, Paul Wiegand, Brad Barnhart, Camille Flinders\",\"doi\":\"10.1093/inteam/vjaf049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land application of municipal and industrial wastewater biosolids for use as a fertilizer or soil conditioner is a common practice in the United States. Regulations are in place to reduce pathogens, minimize disease vectors, and limit concentrations of nutrients and some metals, but extensive assessment of the risk of biosolids-associated chemicals to human health and environmental systems is uncommon. Recently, the United States Environmental Protection Agency developed the Biosolids Tool (BST) to facilitate more comprehensive chemical risk assessment of land-applied biosolids based on a deterministic approach that utilizes conservative model inputs without regard for the variability and uncertainty inherent in environmental exposures. Management decisions based on probabilistic risk assessment (PRA), in which variability and uncertainty are quantified and risk is linked to specific population segments, may provide a more accurate understanding of risk. We examined the sediment risk assessment literature and explored the application of probabilistic model inputs within the BST to better understand how deterministic (DRA) and probabilistic (PRA) risk assessment methods compare for characterizing risk. The BST model results for noncancer and cancer risk outcomes associated with total ingestion of aluminum and benzo(a)pyrene in biosolids applied to pastureland for an adult and child indicated that PRA provides a more nuanced understanding of risk than the traditionally used deterministic approach. Receptor-specific risk patterns, model sensitivity, and risk drivers are discussed. Findings underscore the need for incorporating probabilistic methods into regulatory frameworks to improve the accuracy and reliability of risk assessments for biosolids land application.</p>\",\"PeriodicalId\":13557,\"journal\":{\"name\":\"Integrated Environmental Assessment and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Environmental Assessment and Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/inteam/vjaf049\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf049","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在美国,将城市和工业废水中的生物固体用作肥料或土壤改良剂是一种常见的做法。虽然制定了减少病原体、最大限度地减少病媒以及限制营养物质和某些金属浓度的法规,但很少对生物固体相关化学品对人类健康和环境系统的风险进行广泛评估。最近,美国环境保护署开发了生物固体工具(BST),以促进基于确定性方法对土地应用生物固体进行更全面的化学品风险评估,该方法利用保守模型输入,而不考虑环境暴露中固有的可变性和不确定性。基于概率风险评估(PRA)的管理决策可以提供对风险更准确的理解,其中变异性和不确定性是量化的,并且风险与特定人群相关联。为了更好地理解确定性(DRA)和概率(PRA)风险评估方法在表征风险方面的比较,我们研究了沉积物风险评估文献,并探讨了概率模型输入在BST中的应用。应用于牧场的成人和儿童的生物固体中铝和苯并(a)芘的总摄入量与非癌症和癌症风险结果相关的BST模型结果表明,PRA提供了比传统的确定性方法更细致入微的风险理解。讨论了受体特异性风险模式、模型敏感性和风险驱动因素。研究结果强调需要将概率方法纳入管理框架,以提高生物固体土地应用风险评估的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Risk Assessment of Land-Applied Biosolids with Probabilistic Approaches.

Land application of municipal and industrial wastewater biosolids for use as a fertilizer or soil conditioner is a common practice in the United States. Regulations are in place to reduce pathogens, minimize disease vectors, and limit concentrations of nutrients and some metals, but extensive assessment of the risk of biosolids-associated chemicals to human health and environmental systems is uncommon. Recently, the United States Environmental Protection Agency developed the Biosolids Tool (BST) to facilitate more comprehensive chemical risk assessment of land-applied biosolids based on a deterministic approach that utilizes conservative model inputs without regard for the variability and uncertainty inherent in environmental exposures. Management decisions based on probabilistic risk assessment (PRA), in which variability and uncertainty are quantified and risk is linked to specific population segments, may provide a more accurate understanding of risk. We examined the sediment risk assessment literature and explored the application of probabilistic model inputs within the BST to better understand how deterministic (DRA) and probabilistic (PRA) risk assessment methods compare for characterizing risk. The BST model results for noncancer and cancer risk outcomes associated with total ingestion of aluminum and benzo(a)pyrene in biosolids applied to pastureland for an adult and child indicated that PRA provides a more nuanced understanding of risk than the traditionally used deterministic approach. Receptor-specific risk patterns, model sensitivity, and risk drivers are discussed. Findings underscore the need for incorporating probabilistic methods into regulatory frameworks to improve the accuracy and reliability of risk assessments for biosolids land application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信