Lijun Yang, Feng Li, Linlin Guo, Shengnan Qi, Pengcheng Liu
{"title":"上调miR-22-3p减轻偏头痛致痛觉过敏和神经炎症。","authors":"Lijun Yang, Feng Li, Linlin Guo, Shengnan Qi, Pengcheng Liu","doi":"10.1002/syn.70017","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Migraines profoundly impact patients' quality of life. This study seeks to investigate the relationship between dysregulated miR-22-3p and the neuroinflammation and central sensitization associated with migraine.</p><p><strong>Methods: </strong>Initially, the level of miR-22-3p in migraine patients were analyzed using RT-qPCR. Subsequently, a migraine model was established by administering nitroglycerin (NTG) to mice. To modulate the levels of miR-22-3p within this model, agomir was utilized. Following this intervention, mechanical and thermal pain sensitivity were evaluated by Von Frey filament and radiant heat. The levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 in trigeminal nucleus caudalis (TNC) were detected by RT-qPCR and ELISA. Furthermore, dual luciferase reporting assays were conducted to ascertain whether miR-22-3p could target KLF6. Moreover, the influence of KLF6 on inflammatory cytokines and central sensitization were further studied.</p><p><strong>Results: </strong>miR-22-3p was significantly reduced in migraine patients and NTG mice. In animals, overexpression of miR-22-3p significantly alleviated hyperalgesia and neuroinflammation induced by NTG. Following the overexpression of miR-22-3p, we observed an increase in thermal withdrawal latency, paw mechanical threshold, and periorbital mechanical threshold. Conversely, levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 exhibited a significant reduction. We found that miR-22-3p can inhibit KLF6 expression. Additionally, further findings indicated that the suppression of KLF6 resulted in decreased pain sensitivity along with diminished expression of c-Fos, CGRP, TNF-α, IL-1β, and IL-6.</p><p><strong>Conclusion: </strong>In the context of migraine, miR-22-3p may play a pivotal role in mitigating neuroinflammation and alleviating central sensitization through the inhibition of KLF6.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"79 3","pages":"e70017"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upregulation of miR-22-3p Alleviates Hyperalgesia and Neuroinflammation Caused by Migraine.\",\"authors\":\"Lijun Yang, Feng Li, Linlin Guo, Shengnan Qi, Pengcheng Liu\",\"doi\":\"10.1002/syn.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Migraines profoundly impact patients' quality of life. This study seeks to investigate the relationship between dysregulated miR-22-3p and the neuroinflammation and central sensitization associated with migraine.</p><p><strong>Methods: </strong>Initially, the level of miR-22-3p in migraine patients were analyzed using RT-qPCR. Subsequently, a migraine model was established by administering nitroglycerin (NTG) to mice. To modulate the levels of miR-22-3p within this model, agomir was utilized. Following this intervention, mechanical and thermal pain sensitivity were evaluated by Von Frey filament and radiant heat. The levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 in trigeminal nucleus caudalis (TNC) were detected by RT-qPCR and ELISA. Furthermore, dual luciferase reporting assays were conducted to ascertain whether miR-22-3p could target KLF6. Moreover, the influence of KLF6 on inflammatory cytokines and central sensitization were further studied.</p><p><strong>Results: </strong>miR-22-3p was significantly reduced in migraine patients and NTG mice. In animals, overexpression of miR-22-3p significantly alleviated hyperalgesia and neuroinflammation induced by NTG. Following the overexpression of miR-22-3p, we observed an increase in thermal withdrawal latency, paw mechanical threshold, and periorbital mechanical threshold. Conversely, levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 exhibited a significant reduction. We found that miR-22-3p can inhibit KLF6 expression. Additionally, further findings indicated that the suppression of KLF6 resulted in decreased pain sensitivity along with diminished expression of c-Fos, CGRP, TNF-α, IL-1β, and IL-6.</p><p><strong>Conclusion: </strong>In the context of migraine, miR-22-3p may play a pivotal role in mitigating neuroinflammation and alleviating central sensitization through the inhibition of KLF6.</p>\",\"PeriodicalId\":22131,\"journal\":{\"name\":\"Synapse\",\"volume\":\"79 3\",\"pages\":\"e70017\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synapse\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/syn.70017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.70017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Upregulation of miR-22-3p Alleviates Hyperalgesia and Neuroinflammation Caused by Migraine.
Objective: Migraines profoundly impact patients' quality of life. This study seeks to investigate the relationship between dysregulated miR-22-3p and the neuroinflammation and central sensitization associated with migraine.
Methods: Initially, the level of miR-22-3p in migraine patients were analyzed using RT-qPCR. Subsequently, a migraine model was established by administering nitroglycerin (NTG) to mice. To modulate the levels of miR-22-3p within this model, agomir was utilized. Following this intervention, mechanical and thermal pain sensitivity were evaluated by Von Frey filament and radiant heat. The levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 in trigeminal nucleus caudalis (TNC) were detected by RT-qPCR and ELISA. Furthermore, dual luciferase reporting assays were conducted to ascertain whether miR-22-3p could target KLF6. Moreover, the influence of KLF6 on inflammatory cytokines and central sensitization were further studied.
Results: miR-22-3p was significantly reduced in migraine patients and NTG mice. In animals, overexpression of miR-22-3p significantly alleviated hyperalgesia and neuroinflammation induced by NTG. Following the overexpression of miR-22-3p, we observed an increase in thermal withdrawal latency, paw mechanical threshold, and periorbital mechanical threshold. Conversely, levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 exhibited a significant reduction. We found that miR-22-3p can inhibit KLF6 expression. Additionally, further findings indicated that the suppression of KLF6 resulted in decreased pain sensitivity along with diminished expression of c-Fos, CGRP, TNF-α, IL-1β, and IL-6.
Conclusion: In the context of migraine, miR-22-3p may play a pivotal role in mitigating neuroinflammation and alleviating central sensitization through the inhibition of KLF6.
期刊介绍:
SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.