Ti Wu, Xiaolong Zhang, Dong Wang, Weigong Zhang, Deng Pan, Liang Tao
{"title":"智能轮胎开发新型测试系统的设计与实现:从台架到道路。","authors":"Ti Wu, Xiaolong Zhang, Dong Wang, Weigong Zhang, Deng Pan, Liang Tao","doi":"10.3390/s25082430","DOIUrl":null,"url":null,"abstract":"<p><p>Intelligent tire technology significantly enhances vehicle performance and driving safety by integrating sensors and electronics within the tire to facilitate the real-time monitoring of tire-road interactions. However, its testing and validation face challenges due to the absence of integrated bench and road testing frameworks. This paper introduces a novel, comprehensive testing system designed to support the full lifecycle development of intelligent tire technologies across both laboratory and real-world driving scenarios, focusing on accelerometer and strain-based sensing. Featuring a modular, distributed architecture, the system integrates an instrumented wheel equipped with multiple embedded tire sensors and a wheel force transducer (WFT), as well as vehicle motion and driving behavior sensors. A robust data acquisition platform based on NI CompactRIO supports multiple-channel high-precision sensing, with sampling rates of up to 50 kHz. The system ensures that data performance aligns with diverse intelligent tire sensing principles, supports a wide range of test parameters, and meets the distinct needs of each development stage. The testing system was applied and validated in a tire vertical load estimation study, which systematically explored and validated estimation methods using multiple accelerometers and PVDF sensors, compared sensor characteristics and estimation performance under different installation positions and sensor types, and culminated in a product-level assessment in road conditions. The experimental results confirmed the higher accuracy of accelerometers in vertical load estimation, validated the developed estimation algorithms and the intelligent tire product, and demonstrated the functionality and performance of the testing system. This work provides a versatile and reliable platform for advancing intelligent tire technologies, supporting both future research and industrial applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Novel Testing System for Intelligent Tire Development: From Bench to Road.\",\"authors\":\"Ti Wu, Xiaolong Zhang, Dong Wang, Weigong Zhang, Deng Pan, Liang Tao\",\"doi\":\"10.3390/s25082430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intelligent tire technology significantly enhances vehicle performance and driving safety by integrating sensors and electronics within the tire to facilitate the real-time monitoring of tire-road interactions. However, its testing and validation face challenges due to the absence of integrated bench and road testing frameworks. This paper introduces a novel, comprehensive testing system designed to support the full lifecycle development of intelligent tire technologies across both laboratory and real-world driving scenarios, focusing on accelerometer and strain-based sensing. Featuring a modular, distributed architecture, the system integrates an instrumented wheel equipped with multiple embedded tire sensors and a wheel force transducer (WFT), as well as vehicle motion and driving behavior sensors. A robust data acquisition platform based on NI CompactRIO supports multiple-channel high-precision sensing, with sampling rates of up to 50 kHz. The system ensures that data performance aligns with diverse intelligent tire sensing principles, supports a wide range of test parameters, and meets the distinct needs of each development stage. The testing system was applied and validated in a tire vertical load estimation study, which systematically explored and validated estimation methods using multiple accelerometers and PVDF sensors, compared sensor characteristics and estimation performance under different installation positions and sensor types, and culminated in a product-level assessment in road conditions. The experimental results confirmed the higher accuracy of accelerometers in vertical load estimation, validated the developed estimation algorithms and the intelligent tire product, and demonstrated the functionality and performance of the testing system. This work provides a versatile and reliable platform for advancing intelligent tire technologies, supporting both future research and industrial applications.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25082430\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25082430","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Design and Implementation of Novel Testing System for Intelligent Tire Development: From Bench to Road.
Intelligent tire technology significantly enhances vehicle performance and driving safety by integrating sensors and electronics within the tire to facilitate the real-time monitoring of tire-road interactions. However, its testing and validation face challenges due to the absence of integrated bench and road testing frameworks. This paper introduces a novel, comprehensive testing system designed to support the full lifecycle development of intelligent tire technologies across both laboratory and real-world driving scenarios, focusing on accelerometer and strain-based sensing. Featuring a modular, distributed architecture, the system integrates an instrumented wheel equipped with multiple embedded tire sensors and a wheel force transducer (WFT), as well as vehicle motion and driving behavior sensors. A robust data acquisition platform based on NI CompactRIO supports multiple-channel high-precision sensing, with sampling rates of up to 50 kHz. The system ensures that data performance aligns with diverse intelligent tire sensing principles, supports a wide range of test parameters, and meets the distinct needs of each development stage. The testing system was applied and validated in a tire vertical load estimation study, which systematically explored and validated estimation methods using multiple accelerometers and PVDF sensors, compared sensor characteristics and estimation performance under different installation positions and sensor types, and culminated in a product-level assessment in road conditions. The experimental results confirmed the higher accuracy of accelerometers in vertical load estimation, validated the developed estimation algorithms and the intelligent tire product, and demonstrated the functionality and performance of the testing system. This work provides a versatile and reliable platform for advancing intelligent tire technologies, supporting both future research and industrial applications.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.