Paul Bump, Kaitlyn Loubet-Senear, Sarah Arnold, Mansi Srivastava
{"title":"染色质谱分析数据表明了迈阿密霍夫斯氏菌在发育过程中分化的调控机制。","authors":"Paul Bump, Kaitlyn Loubet-Senear, Sarah Arnold, Mansi Srivastava","doi":"10.1242/dev.204799","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin profiling data can generate and corroborate hypotheses for regulatory events that underlie the control of gene expression in biological processes. Here, we have profiled chromatin accessibility to build a catalog of putative regulatory DNA during embryonic development in an acoel. Acoels represent an enigmatic phylum-level lineage of animals, the Xenacoelomorpha, which is placed either as a sister group to all other animals with bilateral symmetry or as an early diverging ambulacrarian, positioned equally well to inform the evolution of developmental mechanisms. We focused on the acoel Hofstenia miamia, a new research organism for studying whole-body regeneration that also enables investigations of development from zygote to hatching. We profiled chromatin landscapes encompassing major morphological events during development, and combined transcription factor-binding analyses with single-cell RNA-sequencing data to provide regulatory linkages in a hypothesized differentiation trajectory for epidermis, as well as a new gene regulatory network associated with the formation of muscle. This work enables comparisons of chromatin state during embryogenesis between acoels and other animals, as well as comparisons of embryogenesis to regeneration.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatin profiling data indicate regulatory mechanisms for differentiation during development in the acoel Hofstenia miamia.\",\"authors\":\"Paul Bump, Kaitlyn Loubet-Senear, Sarah Arnold, Mansi Srivastava\",\"doi\":\"10.1242/dev.204799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromatin profiling data can generate and corroborate hypotheses for regulatory events that underlie the control of gene expression in biological processes. Here, we have profiled chromatin accessibility to build a catalog of putative regulatory DNA during embryonic development in an acoel. Acoels represent an enigmatic phylum-level lineage of animals, the Xenacoelomorpha, which is placed either as a sister group to all other animals with bilateral symmetry or as an early diverging ambulacrarian, positioned equally well to inform the evolution of developmental mechanisms. We focused on the acoel Hofstenia miamia, a new research organism for studying whole-body regeneration that also enables investigations of development from zygote to hatching. We profiled chromatin landscapes encompassing major morphological events during development, and combined transcription factor-binding analyses with single-cell RNA-sequencing data to provide regulatory linkages in a hypothesized differentiation trajectory for epidermis, as well as a new gene regulatory network associated with the formation of muscle. This work enables comparisons of chromatin state during embryogenesis between acoels and other animals, as well as comparisons of embryogenesis to regeneration.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204799\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204799","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Chromatin profiling data indicate regulatory mechanisms for differentiation during development in the acoel Hofstenia miamia.
Chromatin profiling data can generate and corroborate hypotheses for regulatory events that underlie the control of gene expression in biological processes. Here, we have profiled chromatin accessibility to build a catalog of putative regulatory DNA during embryonic development in an acoel. Acoels represent an enigmatic phylum-level lineage of animals, the Xenacoelomorpha, which is placed either as a sister group to all other animals with bilateral symmetry or as an early diverging ambulacrarian, positioned equally well to inform the evolution of developmental mechanisms. We focused on the acoel Hofstenia miamia, a new research organism for studying whole-body regeneration that also enables investigations of development from zygote to hatching. We profiled chromatin landscapes encompassing major morphological events during development, and combined transcription factor-binding analyses with single-cell RNA-sequencing data to provide regulatory linkages in a hypothesized differentiation trajectory for epidermis, as well as a new gene regulatory network associated with the formation of muscle. This work enables comparisons of chromatin state during embryogenesis between acoels and other animals, as well as comparisons of embryogenesis to regeneration.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.