Thibaud Dauphin, Laurence de Beaurepaire, Apolline Salama, Quentin Pruvost, Clémentine Claire, Karine Haurogné, Sophie Sourice, Aurélien Dupont, Jean-Marie Bach, Julie Hervé, Eric Olmos, Steffi Bosch, Blandine Lieubeau, Mathilde Mosser
{"title":"搅拌系统中球形衍生小胞外囊泡产生的可扩展性。","authors":"Thibaud Dauphin, Laurence de Beaurepaire, Apolline Salama, Quentin Pruvost, Clémentine Claire, Karine Haurogné, Sophie Sourice, Aurélien Dupont, Jean-Marie Bach, Julie Hervé, Eric Olmos, Steffi Bosch, Blandine Lieubeau, Mathilde Mosser","doi":"10.3389/fbioe.2025.1516482","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Small extracellular vesicle (sEV)-based therapies have gained widespread interest, but challenges persist to ensure standardization and high-scale production. Implementing upstream processes in a chemically defined media in stirred-tank bioreactors (STBr) is mandatory to closely control the cell environment, and to scale-up production, but it remains a significant challenge for anchorage-dependent cells.</p><p><strong>Methods: </strong>We used a human β cell line, grown as monolayer or in suspension as spheroid in stirred systems. We assessed the consequences of culturing these cells in 3D with, or without fetal bovine serum in a chemically defined medium, for cell growth, viability and metabolism. We next explored how different scale-up strategies might influence cell and spheroid formation in spinner flask, with the aim to transfer the process in instrumented Ambr®250 STBr. Lastly, we analyzed and characterized sEV production in monolayer, spinner flask and STBr.</p><p><strong>Results and discussion: </strong>Generation of spheroids in a chemically defined medium allowed the culture of highly viable cells in suspension in stirred systems. Spheroid size depended on the system's volumetric power input (P/V), and maintaining this parameter constant during scale-up proved to be the optimal strategy for standardizing the process. However, transferring the spinner flask (SpF) process to the Ambr®250 STBr at constant P/V modified spheroid size, due to important geometric differences and impeller design. Compared to a monolayer reference process, sEV yield decreased two-fold in SpF, but increased two-fold in STBr. Additionally, a lower expression of the CD63 tetraspanin was observed in sEV produced in both stirred systems, suggesting a reduced release of exosomes compared to ectosomes. This study addresses the main issues encountered in spheroid culture scale-up in stirred systems, rather conducive for the production of ectosomes.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1516482"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scalability of spheroid-derived small extracellular vesicles production in stirred systems.\",\"authors\":\"Thibaud Dauphin, Laurence de Beaurepaire, Apolline Salama, Quentin Pruvost, Clémentine Claire, Karine Haurogné, Sophie Sourice, Aurélien Dupont, Jean-Marie Bach, Julie Hervé, Eric Olmos, Steffi Bosch, Blandine Lieubeau, Mathilde Mosser\",\"doi\":\"10.3389/fbioe.2025.1516482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Small extracellular vesicle (sEV)-based therapies have gained widespread interest, but challenges persist to ensure standardization and high-scale production. Implementing upstream processes in a chemically defined media in stirred-tank bioreactors (STBr) is mandatory to closely control the cell environment, and to scale-up production, but it remains a significant challenge for anchorage-dependent cells.</p><p><strong>Methods: </strong>We used a human β cell line, grown as monolayer or in suspension as spheroid in stirred systems. We assessed the consequences of culturing these cells in 3D with, or without fetal bovine serum in a chemically defined medium, for cell growth, viability and metabolism. We next explored how different scale-up strategies might influence cell and spheroid formation in spinner flask, with the aim to transfer the process in instrumented Ambr®250 STBr. Lastly, we analyzed and characterized sEV production in monolayer, spinner flask and STBr.</p><p><strong>Results and discussion: </strong>Generation of spheroids in a chemically defined medium allowed the culture of highly viable cells in suspension in stirred systems. Spheroid size depended on the system's volumetric power input (P/V), and maintaining this parameter constant during scale-up proved to be the optimal strategy for standardizing the process. However, transferring the spinner flask (SpF) process to the Ambr®250 STBr at constant P/V modified spheroid size, due to important geometric differences and impeller design. Compared to a monolayer reference process, sEV yield decreased two-fold in SpF, but increased two-fold in STBr. Additionally, a lower expression of the CD63 tetraspanin was observed in sEV produced in both stirred systems, suggesting a reduced release of exosomes compared to ectosomes. This study addresses the main issues encountered in spheroid culture scale-up in stirred systems, rather conducive for the production of ectosomes.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1516482\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1516482\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1516482","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Scalability of spheroid-derived small extracellular vesicles production in stirred systems.
Introduction: Small extracellular vesicle (sEV)-based therapies have gained widespread interest, but challenges persist to ensure standardization and high-scale production. Implementing upstream processes in a chemically defined media in stirred-tank bioreactors (STBr) is mandatory to closely control the cell environment, and to scale-up production, but it remains a significant challenge for anchorage-dependent cells.
Methods: We used a human β cell line, grown as monolayer or in suspension as spheroid in stirred systems. We assessed the consequences of culturing these cells in 3D with, or without fetal bovine serum in a chemically defined medium, for cell growth, viability and metabolism. We next explored how different scale-up strategies might influence cell and spheroid formation in spinner flask, with the aim to transfer the process in instrumented Ambr®250 STBr. Lastly, we analyzed and characterized sEV production in monolayer, spinner flask and STBr.
Results and discussion: Generation of spheroids in a chemically defined medium allowed the culture of highly viable cells in suspension in stirred systems. Spheroid size depended on the system's volumetric power input (P/V), and maintaining this parameter constant during scale-up proved to be the optimal strategy for standardizing the process. However, transferring the spinner flask (SpF) process to the Ambr®250 STBr at constant P/V modified spheroid size, due to important geometric differences and impeller design. Compared to a monolayer reference process, sEV yield decreased two-fold in SpF, but increased two-fold in STBr. Additionally, a lower expression of the CD63 tetraspanin was observed in sEV produced in both stirred systems, suggesting a reduced release of exosomes compared to ectosomes. This study addresses the main issues encountered in spheroid culture scale-up in stirred systems, rather conducive for the production of ectosomes.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.