Nashwa Elshaer, Ahmed M Eldeeb, Ahmed A A Aioub, Ahmed S Hashem, Soumya Ghosh, Lamya Ahmed Alkeridis, Mohammed Ali Alshehri, Mustafa Shukry, Daklallah A Almalki, Hind A Alkhatabi, Mohamed Afifi, Ammar Al-Farga, Mohamed A Hendawy, Ahmed E A El-Sobki
{"title":"锌纳米颗粒减轻氮嘧菌酯及其纳米包封引起的大鼠肝、肾毒性。","authors":"Nashwa Elshaer, Ahmed M Eldeeb, Ahmed A A Aioub, Ahmed S Hashem, Soumya Ghosh, Lamya Ahmed Alkeridis, Mohammed Ali Alshehri, Mustafa Shukry, Daklallah A Almalki, Hind A Alkhatabi, Mohamed Afifi, Ammar Al-Farga, Mohamed A Hendawy, Ahmed E A El-Sobki","doi":"10.1080/13510002.2025.2491318","DOIUrl":null,"url":null,"abstract":"<p><p>This study sought to ascertain if zinc nanoparticles (ZnNPs) could lessen the toxicity of azoxystrobin (AZ). This naturally occurring methoxyacrylate is one of the most often used fungicides in agriculture in male albino rats. Six sets of 60 mature male albino rats were randomly assigned: control (distilled water), Azoxystrobin formulation (AZOF), Azoxystrobin nano-formula (AZON), ZnNPs, AZOF + ZnNPs, and AZON + ZnNPs. Blood and tissues were obtained for further immunohistochemical, pathological, and biochemical examination. The results showed that exposure to AZOF and AZON significantly increased the levels of the oxidative stress indicators glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Additionally, AZOF significantly impacts liver function bioindicators, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. AZOF and AZON induced damage to the liver and kidney by disrupting vascular dilatation and causing hemorrhages, apoptosis, inflammatory lymphocytes, and necrosis. Furthermore, co-administration of ZnNPs with fungicides (AZOF and AZON) can gently enhance the alterations of oxidative stress and liver function bioindicators levels. These findings showed that ZnNPs could help male rats receiving AZ treat their histologically abnormal liver and kidney.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2491318"},"PeriodicalIF":5.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010655/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zinc nanoparticles mitigate azoxystrobin and its nanoencapsulation-induced hepatic and renal toxicity in rats.\",\"authors\":\"Nashwa Elshaer, Ahmed M Eldeeb, Ahmed A A Aioub, Ahmed S Hashem, Soumya Ghosh, Lamya Ahmed Alkeridis, Mohammed Ali Alshehri, Mustafa Shukry, Daklallah A Almalki, Hind A Alkhatabi, Mohamed Afifi, Ammar Al-Farga, Mohamed A Hendawy, Ahmed E A El-Sobki\",\"doi\":\"10.1080/13510002.2025.2491318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study sought to ascertain if zinc nanoparticles (ZnNPs) could lessen the toxicity of azoxystrobin (AZ). This naturally occurring methoxyacrylate is one of the most often used fungicides in agriculture in male albino rats. Six sets of 60 mature male albino rats were randomly assigned: control (distilled water), Azoxystrobin formulation (AZOF), Azoxystrobin nano-formula (AZON), ZnNPs, AZOF + ZnNPs, and AZON + ZnNPs. Blood and tissues were obtained for further immunohistochemical, pathological, and biochemical examination. The results showed that exposure to AZOF and AZON significantly increased the levels of the oxidative stress indicators glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Additionally, AZOF significantly impacts liver function bioindicators, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. AZOF and AZON induced damage to the liver and kidney by disrupting vascular dilatation and causing hemorrhages, apoptosis, inflammatory lymphocytes, and necrosis. Furthermore, co-administration of ZnNPs with fungicides (AZOF and AZON) can gently enhance the alterations of oxidative stress and liver function bioindicators levels. These findings showed that ZnNPs could help male rats receiving AZ treat their histologically abnormal liver and kidney.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2491318\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010655/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2491318\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2491318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Zinc nanoparticles mitigate azoxystrobin and its nanoencapsulation-induced hepatic and renal toxicity in rats.
This study sought to ascertain if zinc nanoparticles (ZnNPs) could lessen the toxicity of azoxystrobin (AZ). This naturally occurring methoxyacrylate is one of the most often used fungicides in agriculture in male albino rats. Six sets of 60 mature male albino rats were randomly assigned: control (distilled water), Azoxystrobin formulation (AZOF), Azoxystrobin nano-formula (AZON), ZnNPs, AZOF + ZnNPs, and AZON + ZnNPs. Blood and tissues were obtained for further immunohistochemical, pathological, and biochemical examination. The results showed that exposure to AZOF and AZON significantly increased the levels of the oxidative stress indicators glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Additionally, AZOF significantly impacts liver function bioindicators, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. AZOF and AZON induced damage to the liver and kidney by disrupting vascular dilatation and causing hemorrhages, apoptosis, inflammatory lymphocytes, and necrosis. Furthermore, co-administration of ZnNPs with fungicides (AZOF and AZON) can gently enhance the alterations of oxidative stress and liver function bioindicators levels. These findings showed that ZnNPs could help male rats receiving AZ treat their histologically abnormal liver and kidney.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.