Alex J Ramirez, A K M Fazlul Karim Rasel, Sean L Seyler, Mark A Hayes
{"title":"基于梯度绝缘体的金纳米颗粒介质电泳研究。","authors":"Alex J Ramirez, A K M Fazlul Karim Rasel, Sean L Seyler, Mark A Hayes","doi":"10.1002/elps.8119","DOIUrl":null,"url":null,"abstract":"<p><p>Various forms of dielectrophoresis and higher order electrokinetic effects are being increasingly investigated and used to precisely and accurately manipulate micro and nanoparticles within microfluidic devices. The types of particles span ∼10 nm to hundreds of microns in diameter and are composed of minerals, polymers, biological materials, and complex mixtures. Some studies focused on the selective isolation and concentration of purified particles countering negative dielectrophoretic forces against flow and electrophoretic effects. Similar studies are presented here examining the behaviors of small inorganic particles (10 nm diameter) where their collective actions are inconsistent with negative dielectrophoretic effects and were consistent overall with positive dielectrophoresis (DEP). Positive DEP can account for some of the observed phenomena, particularly the deflection of large particle aggregates, which are rapidly accelerated through microchannel constrictions and then pulled back toward the constrictions against the direction of electroosmotic flow. Nevertheless, the dynamic complexity of the observed nanoparticle structures suggests that a myriad of electrostatic and possibly hydrodynamic forces, including both particle-particle and particle-device interactions, may be involved.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Insulator-Based Dielectrophoresis of Gold Nanoparticles.\",\"authors\":\"Alex J Ramirez, A K M Fazlul Karim Rasel, Sean L Seyler, Mark A Hayes\",\"doi\":\"10.1002/elps.8119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various forms of dielectrophoresis and higher order electrokinetic effects are being increasingly investigated and used to precisely and accurately manipulate micro and nanoparticles within microfluidic devices. The types of particles span ∼10 nm to hundreds of microns in diameter and are composed of minerals, polymers, biological materials, and complex mixtures. Some studies focused on the selective isolation and concentration of purified particles countering negative dielectrophoretic forces against flow and electrophoretic effects. Similar studies are presented here examining the behaviors of small inorganic particles (10 nm diameter) where their collective actions are inconsistent with negative dielectrophoretic effects and were consistent overall with positive dielectrophoresis (DEP). Positive DEP can account for some of the observed phenomena, particularly the deflection of large particle aggregates, which are rapidly accelerated through microchannel constrictions and then pulled back toward the constrictions against the direction of electroosmotic flow. Nevertheless, the dynamic complexity of the observed nanoparticle structures suggests that a myriad of electrostatic and possibly hydrodynamic forces, including both particle-particle and particle-device interactions, may be involved.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.8119\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.8119","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Gradient Insulator-Based Dielectrophoresis of Gold Nanoparticles.
Various forms of dielectrophoresis and higher order electrokinetic effects are being increasingly investigated and used to precisely and accurately manipulate micro and nanoparticles within microfluidic devices. The types of particles span ∼10 nm to hundreds of microns in diameter and are composed of minerals, polymers, biological materials, and complex mixtures. Some studies focused on the selective isolation and concentration of purified particles countering negative dielectrophoretic forces against flow and electrophoretic effects. Similar studies are presented here examining the behaviors of small inorganic particles (10 nm diameter) where their collective actions are inconsistent with negative dielectrophoretic effects and were consistent overall with positive dielectrophoresis (DEP). Positive DEP can account for some of the observed phenomena, particularly the deflection of large particle aggregates, which are rapidly accelerated through microchannel constrictions and then pulled back toward the constrictions against the direction of electroosmotic flow. Nevertheless, the dynamic complexity of the observed nanoparticle structures suggests that a myriad of electrostatic and possibly hydrodynamic forces, including both particle-particle and particle-device interactions, may be involved.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.