连接回归。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris
{"title":"连接回归。","authors":"Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris","doi":"10.1093/biostatistics/kxaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connectivity Regression.\",\"authors\":\"Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris\",\"doi\":\"10.1093/biostatistics/kxaf002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

评估大脑功能连接网络在个体之间的差异有望揭示重要的科学问题,例如健康大脑在整个生命周期中的衰老模式或与疾病相关的连接障碍。在本文中,我们介绍了一个通用的回归框架,Connectivity regression (ConnReg),用于在考虑网络内边缘依赖的情况下,在协变量上回归特定主题的功能连接网络。ConnReg利用Fisher变换的多元泛化将网络对象投射到一个替代空间中,在这个空间中高斯假设被证明是正确的,并且正的半确定约束被自动满足。在变换后的空间中拟合惩罚多元回归,同时诱导回归系数和协方差元素的稀疏性,从而捕获网络边缘间的依赖关系。我们使用置换测试来执行多重调整推理,以识别与连通性相关的协变量,并使用稳定性选择分数来识别随所选协变量变化的网络边缘。仿真研究验证了我们提出的方法的推理特性,并展示了如何估计和计算网络内边缘间的依赖,从而更有效地估计,更强大的推理,更准确地选择协变量相关的网络边缘。我们将ConnReg应用于人类连接组项目年轻人研究,揭示了连接如何随语言处理协变量和大脑结构特征而变化的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity Regression.

Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信