Qiyu Zhao, Jiayuan Xu, Ziqing Shi, Yang Zhang, Xin Du, Ying Zhai, Jinglei Xu, Feng Liu, Quan Zhang
{"title":"全基因组多效性分析揭示2型糖尿病与皮质下脑容量之间的共同遗传关联","authors":"Qiyu Zhao, Jiayuan Xu, Ziqing Shi, Yang Zhang, Xin Du, Ying Zhai, Jinglei Xu, Feng Liu, Quan Zhang","doi":"10.34133/research.0688","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM), a prevalent metabolic disorder marked by insulin resistance and hyperglycemia, has been linked to volumetric changes in subcortical regions, yet the genetic basis of this relationship remains unclear. We analyzed genome-wide association study summary data for T2DM and 14 subcortical volumetric traits, using MiXeR to quantify shared genetic architecture and applying conditional/conjunctional false discovery rate analyses to detect novel and shared genomic loci. Enrichment and gene expression analyses were subsequently performed to explore the biological functions and mechanisms of genes associated with these loci. We observed a substantial proportion of trait-influencing variants shared between T2DM and subcortical structures, with Dice coefficients ranging from 22.4% to 49.6%. Additionally, 70 distinct loci were identified as being jointly associated with T2DM and subcortical volumes, 5 and 22 of which were novel for T2DM and subcortical volumes, respectively. The 769 protein-coding genes mapped to these shared loci are enriched in metabolic and neurodevelopmental pathways and exhibit specific developmental trajectories, with 117 genes showing expression levels linked to both T2DM and subcortical structures. This study uncovered polygenic overlap between T2DM and subcortical structures, deepening our comprehension of the genetic factors linking metabolic disorders and brain health.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0688"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053431/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide Pleiotropy Analysis Reveals Shared Genetic Associations between Type 2 Diabetes Mellitus and Subcortical Brain Volumes.\",\"authors\":\"Qiyu Zhao, Jiayuan Xu, Ziqing Shi, Yang Zhang, Xin Du, Ying Zhai, Jinglei Xu, Feng Liu, Quan Zhang\",\"doi\":\"10.34133/research.0688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes mellitus (T2DM), a prevalent metabolic disorder marked by insulin resistance and hyperglycemia, has been linked to volumetric changes in subcortical regions, yet the genetic basis of this relationship remains unclear. We analyzed genome-wide association study summary data for T2DM and 14 subcortical volumetric traits, using MiXeR to quantify shared genetic architecture and applying conditional/conjunctional false discovery rate analyses to detect novel and shared genomic loci. Enrichment and gene expression analyses were subsequently performed to explore the biological functions and mechanisms of genes associated with these loci. We observed a substantial proportion of trait-influencing variants shared between T2DM and subcortical structures, with Dice coefficients ranging from 22.4% to 49.6%. Additionally, 70 distinct loci were identified as being jointly associated with T2DM and subcortical volumes, 5 and 22 of which were novel for T2DM and subcortical volumes, respectively. The 769 protein-coding genes mapped to these shared loci are enriched in metabolic and neurodevelopmental pathways and exhibit specific developmental trajectories, with 117 genes showing expression levels linked to both T2DM and subcortical structures. This study uncovered polygenic overlap between T2DM and subcortical structures, deepening our comprehension of the genetic factors linking metabolic disorders and brain health.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0688\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0688\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0688","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Genome-wide Pleiotropy Analysis Reveals Shared Genetic Associations between Type 2 Diabetes Mellitus and Subcortical Brain Volumes.
Type 2 diabetes mellitus (T2DM), a prevalent metabolic disorder marked by insulin resistance and hyperglycemia, has been linked to volumetric changes in subcortical regions, yet the genetic basis of this relationship remains unclear. We analyzed genome-wide association study summary data for T2DM and 14 subcortical volumetric traits, using MiXeR to quantify shared genetic architecture and applying conditional/conjunctional false discovery rate analyses to detect novel and shared genomic loci. Enrichment and gene expression analyses were subsequently performed to explore the biological functions and mechanisms of genes associated with these loci. We observed a substantial proportion of trait-influencing variants shared between T2DM and subcortical structures, with Dice coefficients ranging from 22.4% to 49.6%. Additionally, 70 distinct loci were identified as being jointly associated with T2DM and subcortical volumes, 5 and 22 of which were novel for T2DM and subcortical volumes, respectively. The 769 protein-coding genes mapped to these shared loci are enriched in metabolic and neurodevelopmental pathways and exhibit specific developmental trajectories, with 117 genes showing expression levels linked to both T2DM and subcortical structures. This study uncovered polygenic overlap between T2DM and subcortical structures, deepening our comprehension of the genetic factors linking metabolic disorders and brain health.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.