Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Vicki L Clifton, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison
{"title":"绵羊早产儿皮质醇浓度升高会影响心脏发育。","authors":"Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Vicki L Clifton, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison","doi":"10.1113/EP092506","DOIUrl":null,"url":null,"abstract":"<p><p>The prepartum rise in cortisol promotes cardiac development and maturation. Here, we investigated the impact of elevated circulating cortisol during mid-late gestation on cardiac growth and metabolism in fetal sheep. Saline or cortisol (2-3 mg in 4.4 mL/24 h) was infused into the fetal jugular vein from 109 to 116 days gestation (dG, term = 150 dG), and fetal heart tissue was collected at 116 dG. Glucocorticoid concentrations, gene and protein expression were measured in fetal left ventricle (LV) tissue. Intrafetal cortisol infusion increased cardiac cortisol concentration but downregulated the protein abundance of glucocorticoid receptor (GR) isoforms (GRα-A, GR-P, GR-A, GRα-D2 and GRα-D3). The gene and protein expression of markers of cardiac hyperplastic growth (IGF1, IGF-1R, TGFβ and AGT) were downregulated, while a protein marker of DNA replication (proliferating cell nuclear antigen) was upregulated by cortisol infusion. Cardiac protein and/or gene expression of complex I of the electron transport chain, SOD2, GLUT-4 (gene and protein), and phosphorylated IRS-1, were upregulated in response to elevated fetal cortisol concentration. Intrafetal cortisol infusion downregulated gene expression of PDK4, which mediates the metabolic switch from glucose to fatty acid metabolism. Cardiac expression of molecular markers involved in cardiovascular protection (SIRT-1, HO1, LAMP1 and SK1) were also downregulated in the cortisol group. In conclusion, these findings suggest that chronic cortisol exposure in preterm fetuses alters heart development, promoting cardiac maturation and potentially increasing the risk of cardiovascular disease later in life if these changes persist into adulthood.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated cortisol concentration in preterm sheep fetuses impacts heart development.\",\"authors\":\"Reza Amanollahi, Stacey L Holman, Melanie R Bertossa, Ashley S Meakin, Vicki L Clifton, Kent L Thornburg, I Caroline McMillen, Michael D Wiese, Mitchell C Lock, Janna L Morrison\",\"doi\":\"10.1113/EP092506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prepartum rise in cortisol promotes cardiac development and maturation. Here, we investigated the impact of elevated circulating cortisol during mid-late gestation on cardiac growth and metabolism in fetal sheep. Saline or cortisol (2-3 mg in 4.4 mL/24 h) was infused into the fetal jugular vein from 109 to 116 days gestation (dG, term = 150 dG), and fetal heart tissue was collected at 116 dG. Glucocorticoid concentrations, gene and protein expression were measured in fetal left ventricle (LV) tissue. Intrafetal cortisol infusion increased cardiac cortisol concentration but downregulated the protein abundance of glucocorticoid receptor (GR) isoforms (GRα-A, GR-P, GR-A, GRα-D2 and GRα-D3). The gene and protein expression of markers of cardiac hyperplastic growth (IGF1, IGF-1R, TGFβ and AGT) were downregulated, while a protein marker of DNA replication (proliferating cell nuclear antigen) was upregulated by cortisol infusion. Cardiac protein and/or gene expression of complex I of the electron transport chain, SOD2, GLUT-4 (gene and protein), and phosphorylated IRS-1, were upregulated in response to elevated fetal cortisol concentration. Intrafetal cortisol infusion downregulated gene expression of PDK4, which mediates the metabolic switch from glucose to fatty acid metabolism. Cardiac expression of molecular markers involved in cardiovascular protection (SIRT-1, HO1, LAMP1 and SK1) were also downregulated in the cortisol group. In conclusion, these findings suggest that chronic cortisol exposure in preterm fetuses alters heart development, promoting cardiac maturation and potentially increasing the risk of cardiovascular disease later in life if these changes persist into adulthood.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092506\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Elevated cortisol concentration in preterm sheep fetuses impacts heart development.
The prepartum rise in cortisol promotes cardiac development and maturation. Here, we investigated the impact of elevated circulating cortisol during mid-late gestation on cardiac growth and metabolism in fetal sheep. Saline or cortisol (2-3 mg in 4.4 mL/24 h) was infused into the fetal jugular vein from 109 to 116 days gestation (dG, term = 150 dG), and fetal heart tissue was collected at 116 dG. Glucocorticoid concentrations, gene and protein expression were measured in fetal left ventricle (LV) tissue. Intrafetal cortisol infusion increased cardiac cortisol concentration but downregulated the protein abundance of glucocorticoid receptor (GR) isoforms (GRα-A, GR-P, GR-A, GRα-D2 and GRα-D3). The gene and protein expression of markers of cardiac hyperplastic growth (IGF1, IGF-1R, TGFβ and AGT) were downregulated, while a protein marker of DNA replication (proliferating cell nuclear antigen) was upregulated by cortisol infusion. Cardiac protein and/or gene expression of complex I of the electron transport chain, SOD2, GLUT-4 (gene and protein), and phosphorylated IRS-1, were upregulated in response to elevated fetal cortisol concentration. Intrafetal cortisol infusion downregulated gene expression of PDK4, which mediates the metabolic switch from glucose to fatty acid metabolism. Cardiac expression of molecular markers involved in cardiovascular protection (SIRT-1, HO1, LAMP1 and SK1) were also downregulated in the cortisol group. In conclusion, these findings suggest that chronic cortisol exposure in preterm fetuses alters heart development, promoting cardiac maturation and potentially increasing the risk of cardiovascular disease later in life if these changes persist into adulthood.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.