氢氧根的低能解离重组。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
J Forer, D Hvizdoš, C H Greene, V Kokoouline
{"title":"氢氧根的低能解离重组。","authors":"J Forer, D Hvizdoš, C H Greene, V Kokoouline","doi":"10.1063/5.0261887","DOIUrl":null,"url":null,"abstract":"<p><p>Dissociative recombination of the OH+ ion with free electrons is modeled theoretically using a recently developed approach that is based on first-principles calculations and multichannel quantum defect theory. The coupling between the incident electron and the rovibrational motion of the ion is accounted for. The cross section of the process at collision energies 10-6-1 eV and the thermally averaged rate coefficient at 10-1000 K are evaluated. The obtained anisotropic rate coefficients agree well with the data from a recent experiment carried out at the Cryogenic Storage Ring, especially when compared to previous theoretical values, which are smaller than the experimental results by about a factor of about 30.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 17","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-energy dissociative recombination of OH.\",\"authors\":\"J Forer, D Hvizdoš, C H Greene, V Kokoouline\",\"doi\":\"10.1063/5.0261887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dissociative recombination of the OH+ ion with free electrons is modeled theoretically using a recently developed approach that is based on first-principles calculations and multichannel quantum defect theory. The coupling between the incident electron and the rovibrational motion of the ion is accounted for. The cross section of the process at collision energies 10-6-1 eV and the thermally averaged rate coefficient at 10-1000 K are evaluated. The obtained anisotropic rate coefficients agree well with the data from a recent experiment carried out at the Cryogenic Storage Ring, especially when compared to previous theoretical values, which are smaller than the experimental results by about a factor of about 30.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 17\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0261887\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0261887","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用基于第一性原理计算和多通道量子缺陷理论的新方法,对OH+离子与自由电子的解离重组进行了理论建模。入射电子与离子的旋转运动之间的耦合得到了解释。计算了碰撞能量为10-6-1 eV时的反应截面和10-1000 K时的热平均速率系数。得到的各向异性速率系数与最近在低温贮藏环上进行的实验数据吻合得很好,特别是与先前的理论值相比,理论值比实验结果小约30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-energy dissociative recombination of OH.

Dissociative recombination of the OH+ ion with free electrons is modeled theoretically using a recently developed approach that is based on first-principles calculations and multichannel quantum defect theory. The coupling between the incident electron and the rovibrational motion of the ion is accounted for. The cross section of the process at collision energies 10-6-1 eV and the thermally averaged rate coefficient at 10-1000 K are evaluated. The obtained anisotropic rate coefficients agree well with the data from a recent experiment carried out at the Cryogenic Storage Ring, especially when compared to previous theoretical values, which are smaller than the experimental results by about a factor of about 30.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信