原生苏云金芽孢杆菌对丝虫病的特异性杀线虫基因评价。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Paramjeet, Devendra Jain, Chandra Prakash Nama, Santosh Ranjan Mohanty
{"title":"原生苏云金芽孢杆菌对丝虫病的特异性杀线虫基因评价。","authors":"Paramjeet, Devendra Jain, Chandra Prakash Nama, Santosh Ranjan Mohanty","doi":"10.1007/s12223-025-01268-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-parasitic nematodes, including root-knot nematodes, are phyto-parasites that cause significant crop damage and economic losses. Bacillus thuringiensis (Bt), which produces nematicidal toxins, is extensively used to combat nematode infestations in agricultural and horticultural crops. This research assessed the efficacy of native Bt strains as a biocontrol agents against the root-knot nematode Meloidogyne incognita. Twenty native Bt strains were evaluated for the presence of nematicidal cry genes using PCR. Eight strains, namely Bt1, Bt5, Bt6, Bt7, Bt17, Bt19, Bt23, and Bt24, exhibited the presence of nematicidal cry genes, specifically cry5, app6, cry12, cry13, cry14, cry21, xpp55, cry31, cry73, and cry40, as determined by gene-specific primers. The in vitro effectiveness of the Bt strains was assessed against M. incognita using a cavity block test, revealing that the Bt strains, namely Bt7 and Bt19, impeded the hatching of M. incognita eggs and were deadly to nematode larvae (J2 stage). SEM analysis of spore-crystal mixtures of Bt isolates revealed different crystal shapes that confirmed the nematicidal activity. Pot experiments revealed that the Bt7 and Bt19 strains are the most efficacious biological agents, exhibiting superior nematicidal activity in Brinjal and Tomato. The molecular characterization of the most virulent Bt strains, namely Bt-7 and Bt-19, using 16S rDNA sequencing, validated their molecular identification as Bacillus thuringiensis.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of native Bacillus thuringiensis strains possessing nematicidal specific cry genes against Meloidogyne incognita.\",\"authors\":\"Paramjeet, Devendra Jain, Chandra Prakash Nama, Santosh Ranjan Mohanty\",\"doi\":\"10.1007/s12223-025-01268-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-parasitic nematodes, including root-knot nematodes, are phyto-parasites that cause significant crop damage and economic losses. Bacillus thuringiensis (Bt), which produces nematicidal toxins, is extensively used to combat nematode infestations in agricultural and horticultural crops. This research assessed the efficacy of native Bt strains as a biocontrol agents against the root-knot nematode Meloidogyne incognita. Twenty native Bt strains were evaluated for the presence of nematicidal cry genes using PCR. Eight strains, namely Bt1, Bt5, Bt6, Bt7, Bt17, Bt19, Bt23, and Bt24, exhibited the presence of nematicidal cry genes, specifically cry5, app6, cry12, cry13, cry14, cry21, xpp55, cry31, cry73, and cry40, as determined by gene-specific primers. The in vitro effectiveness of the Bt strains was assessed against M. incognita using a cavity block test, revealing that the Bt strains, namely Bt7 and Bt19, impeded the hatching of M. incognita eggs and were deadly to nematode larvae (J2 stage). SEM analysis of spore-crystal mixtures of Bt isolates revealed different crystal shapes that confirmed the nematicidal activity. Pot experiments revealed that the Bt7 and Bt19 strains are the most efficacious biological agents, exhibiting superior nematicidal activity in Brinjal and Tomato. The molecular characterization of the most virulent Bt strains, namely Bt-7 and Bt-19, using 16S rDNA sequencing, validated their molecular identification as Bacillus thuringiensis.</p>\",\"PeriodicalId\":12346,\"journal\":{\"name\":\"Folia microbiologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia microbiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-025-01268-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01268-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物寄生线虫,包括根结线虫,是造成重大作物损害和经济损失的植物寄生虫。苏云金芽孢杆菌(Bacillus thuringiensis, Bt)产生杀线虫毒素,被广泛用于防治农业和园艺作物中的线虫侵扰。本研究评估了本地Bt菌株作为生物防治剂对根结线虫的防治效果。用PCR方法对20株本地Bt菌株进行了杀线虫基因的检测。通过基因特异性引物检测,8个菌株Bt1、Bt5、Bt6、Bt7、Bt17、Bt19、Bt23和Bt24均存在杀线虫cry基因,具体为cry5、app6、cry12、cry13、cry14、cry21、xpp55、cry31、cry73和cry40。采用空腔阻断试验评估了Bt菌株对M. incognita的体外有效性,结果表明,Bt菌株Bt7和Bt19能抑制M. incognita卵的孵化,对线虫幼虫(J2期)具有致死性。对Bt分离株的孢子-晶体混合物进行扫描电镜分析,发现不同的晶体形状,证实了其杀线虫活性。盆栽试验结果表明,Bt7和Bt19菌株是最有效的生物制剂,对茄子和番茄具有较强的杀线虫活性。对毒性最强的Bt菌株Bt-7和Bt-19进行16S rDNA测序,鉴定其为苏云金芽孢杆菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of native Bacillus thuringiensis strains possessing nematicidal specific cry genes against Meloidogyne incognita.

Plant-parasitic nematodes, including root-knot nematodes, are phyto-parasites that cause significant crop damage and economic losses. Bacillus thuringiensis (Bt), which produces nematicidal toxins, is extensively used to combat nematode infestations in agricultural and horticultural crops. This research assessed the efficacy of native Bt strains as a biocontrol agents against the root-knot nematode Meloidogyne incognita. Twenty native Bt strains were evaluated for the presence of nematicidal cry genes using PCR. Eight strains, namely Bt1, Bt5, Bt6, Bt7, Bt17, Bt19, Bt23, and Bt24, exhibited the presence of nematicidal cry genes, specifically cry5, app6, cry12, cry13, cry14, cry21, xpp55, cry31, cry73, and cry40, as determined by gene-specific primers. The in vitro effectiveness of the Bt strains was assessed against M. incognita using a cavity block test, revealing that the Bt strains, namely Bt7 and Bt19, impeded the hatching of M. incognita eggs and were deadly to nematode larvae (J2 stage). SEM analysis of spore-crystal mixtures of Bt isolates revealed different crystal shapes that confirmed the nematicidal activity. Pot experiments revealed that the Bt7 and Bt19 strains are the most efficacious biological agents, exhibiting superior nematicidal activity in Brinjal and Tomato. The molecular characterization of the most virulent Bt strains, namely Bt-7 and Bt-19, using 16S rDNA sequencing, validated their molecular identification as Bacillus thuringiensis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信