{"title":"基于监督对比学习的微型卷积神经网络用于癫痫发作预测。","authors":"Yongfeng Zhang, Hailing Feng, Shuai Wang, Hongbin Lv, Tiantian Xiao, Ziwei Wang, Yanna Zhao","doi":"10.1142/S0129065725500340","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing methods encounters a bottleneck that is difficult to overcome. Moreover, there are certain limitations such as significant differences in prediction efficacy among patients or intricate model structures. Given these considerations, Siamese Network (SiaNet) and Triplet Network (TriNet) are proposed based on tiny convolutional neural network and supervised contrastive learning. Short-Time Fourier Transform (STFT) is first applied to the pre-processed data. Then data tuples are constructed and fed into the networks for training. Both networks try to minimize the interval between samples of the same class while maximize the interval between samples of different classes. The two networks consist of multiple branches with shared weights, which can learn from each other via contrastive learning. Promising results are obtained on the CHB-MIT and Siena datasets, with a total of 35 patients. Meanwhile, both models have only 19.351K parameters.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550034"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiny Convolutional Neural Network with Supervised Contrastive Learning for Epileptic Seizure Prediction.\",\"authors\":\"Yongfeng Zhang, Hailing Feng, Shuai Wang, Hongbin Lv, Tiantian Xiao, Ziwei Wang, Yanna Zhao\",\"doi\":\"10.1142/S0129065725500340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing methods encounters a bottleneck that is difficult to overcome. Moreover, there are certain limitations such as significant differences in prediction efficacy among patients or intricate model structures. Given these considerations, Siamese Network (SiaNet) and Triplet Network (TriNet) are proposed based on tiny convolutional neural network and supervised contrastive learning. Short-Time Fourier Transform (STFT) is first applied to the pre-processed data. Then data tuples are constructed and fed into the networks for training. Both networks try to minimize the interval between samples of the same class while maximize the interval between samples of different classes. The two networks consist of multiple branches with shared weights, which can learn from each other via contrastive learning. Promising results are obtained on the CHB-MIT and Siena datasets, with a total of 35 patients. Meanwhile, both models have only 19.351K parameters.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Tiny Convolutional Neural Network with Supervised Contrastive Learning for Epileptic Seizure Prediction.
Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing methods encounters a bottleneck that is difficult to overcome. Moreover, there are certain limitations such as significant differences in prediction efficacy among patients or intricate model structures. Given these considerations, Siamese Network (SiaNet) and Triplet Network (TriNet) are proposed based on tiny convolutional neural network and supervised contrastive learning. Short-Time Fourier Transform (STFT) is first applied to the pre-processed data. Then data tuples are constructed and fed into the networks for training. Both networks try to minimize the interval between samples of the same class while maximize the interval between samples of different classes. The two networks consist of multiple branches with shared weights, which can learn from each other via contrastive learning. Promising results are obtained on the CHB-MIT and Siena datasets, with a total of 35 patients. Meanwhile, both models have only 19.351K parameters.