Leonardo Jo, Sara Buti, Mariana A S Artur, Rianne M C Kluck, Alex Cantó-Pastor, Siobhán M Brady, Kaisa Kajala
{"title":"转录因子SlMYB41、SlMYB92和SlWRKY71调控番茄外表皮基因表达。","authors":"Leonardo Jo, Sara Buti, Mariana A S Artur, Rianne M C Kluck, Alex Cantó-Pastor, Siobhán M Brady, Kaisa Kajala","doi":"10.1093/jxb/eraf161","DOIUrl":null,"url":null,"abstract":"<p><p>Root barrier cell types, like the endodermis and exodermis, are crucial for plant acclimation to environmental stresses. Deposition of suberin, a hydrophobic polymer, in these cell layers restricts the movement of molecules and plays a vital role in stress responses. This study investigates the role of SlMYB41, SlMYB92 and SlWRKY71 transcription factors (TFs) in regulating suberin biosynthesis in the tomato (Solanum lycopersicum) root exodermis by genetic perturbation. Genetic perturbation of these TFs altered exodermal suberin deposition patterns, indicating the SlMYBs as positive and SlWRKY71 negative regulators of suberization. RNA sequencing revealed a significant overlap between differentially expressed genes regulated by these TFs, suggesting a shared regulatory network. Gene set enrichment analyses highlighted their role in lipid and suberin biosynthesis as well as overrepresentation of exodermis-enriched transcripts. Furthermore, transactivation assays demonstrated that these two MYBs promote the expression of suberin-related genes, while SlWRKY71 represses them. These results indicate a complex antagonistic relationship, advancing our understanding of the regulatory mechanisms controlling exodermis suberization in tomato roots.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcription factors SlMYB41, SlMYB92 and SlWRKY71 regulate gene expression in the tomato exodermis.\",\"authors\":\"Leonardo Jo, Sara Buti, Mariana A S Artur, Rianne M C Kluck, Alex Cantó-Pastor, Siobhán M Brady, Kaisa Kajala\",\"doi\":\"10.1093/jxb/eraf161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root barrier cell types, like the endodermis and exodermis, are crucial for plant acclimation to environmental stresses. Deposition of suberin, a hydrophobic polymer, in these cell layers restricts the movement of molecules and plays a vital role in stress responses. This study investigates the role of SlMYB41, SlMYB92 and SlWRKY71 transcription factors (TFs) in regulating suberin biosynthesis in the tomato (Solanum lycopersicum) root exodermis by genetic perturbation. Genetic perturbation of these TFs altered exodermal suberin deposition patterns, indicating the SlMYBs as positive and SlWRKY71 negative regulators of suberization. RNA sequencing revealed a significant overlap between differentially expressed genes regulated by these TFs, suggesting a shared regulatory network. Gene set enrichment analyses highlighted their role in lipid and suberin biosynthesis as well as overrepresentation of exodermis-enriched transcripts. Furthermore, transactivation assays demonstrated that these two MYBs promote the expression of suberin-related genes, while SlWRKY71 represses them. These results indicate a complex antagonistic relationship, advancing our understanding of the regulatory mechanisms controlling exodermis suberization in tomato roots.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf161\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf161","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Transcription factors SlMYB41, SlMYB92 and SlWRKY71 regulate gene expression in the tomato exodermis.
Root barrier cell types, like the endodermis and exodermis, are crucial for plant acclimation to environmental stresses. Deposition of suberin, a hydrophobic polymer, in these cell layers restricts the movement of molecules and plays a vital role in stress responses. This study investigates the role of SlMYB41, SlMYB92 and SlWRKY71 transcription factors (TFs) in regulating suberin biosynthesis in the tomato (Solanum lycopersicum) root exodermis by genetic perturbation. Genetic perturbation of these TFs altered exodermal suberin deposition patterns, indicating the SlMYBs as positive and SlWRKY71 negative regulators of suberization. RNA sequencing revealed a significant overlap between differentially expressed genes regulated by these TFs, suggesting a shared regulatory network. Gene set enrichment analyses highlighted their role in lipid and suberin biosynthesis as well as overrepresentation of exodermis-enriched transcripts. Furthermore, transactivation assays demonstrated that these two MYBs promote the expression of suberin-related genes, while SlWRKY71 represses them. These results indicate a complex antagonistic relationship, advancing our understanding of the regulatory mechanisms controlling exodermis suberization in tomato roots.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.