UV-B照射不促进拟南芥开花,尽管增加了FT表达。

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-05-04 eCollection Date: 2025-05-01 DOI:10.1002/pld3.70073
Ami Takahashi, Yuki Takahashi, Jun Hidema, Mika Teranishi
{"title":"UV-B照射不促进拟南芥开花,尽管增加了FT表达。","authors":"Ami Takahashi, Yuki Takahashi, Jun Hidema, Mika Teranishi","doi":"10.1002/pld3.70073","DOIUrl":null,"url":null,"abstract":"<p><p>Various environmental factors control the plant flowering time. However, the specific effects of ultraviolet (UV)-B radiation on flowering remain unclear. UV-B irradiation delays flowering in <i>Arabidopsis</i> during short-day (SD) photoperiods. In contrast, UV-B irradiation causes a variety of flowering phenotypes during long-day (LD) photoperiods, including unchanged, delayed, and accelerated flowering. We hypothesized that variations in UV-B intensity are responsible for the phenotypic changes under LD photoperiods. Therefore, in this study, <i>Arabidopsis</i> plants were exposed to two distinct UV-B intensities: a low UV-B intensity that activates UVR8-dependent pathways and high UV-B intensity that activates both UVR8-dependent and -independent pathways. Under LD photoperiods, neither the wild-type (WT) nor the <i>uvr8</i> mutant showed any change in flowering time at either UV-B irradiation intensity. Under the SD photoperiod, UV-B irradiation delayed WT flowering. The expression of flowering locus T (<i>FT</i>) increased after UV-B irradiation under the LD photoperiod in a UVR8-dependent manner. However, despite the increased expression of <i>FT</i>, expression levels of floral meristem identity genes in shoot apical meristem (SAM) were not increased by UV-B irradiation. As UV-B irradiation is known to suppress flowering in SAM in a UVR8-dependent manner, increase in <i>FT</i> expression induced by UV-B irradiation possibly antagonized the suppressive effect of UV-B irradiation. Overall, these results suggest that flowering phenotypes do not change with UV-B intensity but with the balance between the inhibitory and promotive effects of UVR8 activated by UV-B irradiation.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 5","pages":"e70073"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050359/pdf/","citationCount":"0","resultStr":"{\"title\":\"UV-B Irradiation Does Not Promote Flowering in <i>Arabidopsis</i> Despite Increased <i>FT</i> Expression.\",\"authors\":\"Ami Takahashi, Yuki Takahashi, Jun Hidema, Mika Teranishi\",\"doi\":\"10.1002/pld3.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various environmental factors control the plant flowering time. However, the specific effects of ultraviolet (UV)-B radiation on flowering remain unclear. UV-B irradiation delays flowering in <i>Arabidopsis</i> during short-day (SD) photoperiods. In contrast, UV-B irradiation causes a variety of flowering phenotypes during long-day (LD) photoperiods, including unchanged, delayed, and accelerated flowering. We hypothesized that variations in UV-B intensity are responsible for the phenotypic changes under LD photoperiods. Therefore, in this study, <i>Arabidopsis</i> plants were exposed to two distinct UV-B intensities: a low UV-B intensity that activates UVR8-dependent pathways and high UV-B intensity that activates both UVR8-dependent and -independent pathways. Under LD photoperiods, neither the wild-type (WT) nor the <i>uvr8</i> mutant showed any change in flowering time at either UV-B irradiation intensity. Under the SD photoperiod, UV-B irradiation delayed WT flowering. The expression of flowering locus T (<i>FT</i>) increased after UV-B irradiation under the LD photoperiod in a UVR8-dependent manner. However, despite the increased expression of <i>FT</i>, expression levels of floral meristem identity genes in shoot apical meristem (SAM) were not increased by UV-B irradiation. As UV-B irradiation is known to suppress flowering in SAM in a UVR8-dependent manner, increase in <i>FT</i> expression induced by UV-B irradiation possibly antagonized the suppressive effect of UV-B irradiation. Overall, these results suggest that flowering phenotypes do not change with UV-B intensity but with the balance between the inhibitory and promotive effects of UVR8 activated by UV-B irradiation.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"9 5\",\"pages\":\"e70073\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70073\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

各种环境因素控制着植物的开花时间。然而,紫外线(UV)-B辐射对开花的具体影响尚不清楚。UV-B照射延迟了拟南芥在短日照期(SD)的开花时间。相比之下,UV-B照射在长日(LD)光周期引起多种开花表型,包括不变开花、延迟开花和加速开花。我们假设UV-B强度的变化是LD光周期下表型变化的原因。因此,在本研究中,拟南芥植物暴露于两种不同的UV-B强度:激活uvr8依赖途径的低UV-B强度和激活uvr8依赖和不依赖途径的高UV-B强度。在LD光周期下,野生型(WT)和uvr8突变体在UV-B辐照强度下开花时间均未发生变化。在SD光周期下,UV-B照射延迟了WT的开花时间。在LD光周期下,UV-B照射后开花位点T (FT)的表达增加,且与uvr8相关。然而,UV-B照射虽然增加了FT的表达,但并没有增加茎尖分生组织(SAM)中花分生组织特征基因的表达水平。由于已知UV-B照射以依赖于uvr8的方式抑制SAM的开花,因此UV-B照射诱导的FT表达增加可能拮抗了UV-B照射的抑制作用。综上所述,这些结果表明,开花表型不随UV-B强度的变化而变化,而随UV-B照射激活的UVR8的抑制和促进作用之间的平衡而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-B Irradiation Does Not Promote Flowering in Arabidopsis Despite Increased FT Expression.

Various environmental factors control the plant flowering time. However, the specific effects of ultraviolet (UV)-B radiation on flowering remain unclear. UV-B irradiation delays flowering in Arabidopsis during short-day (SD) photoperiods. In contrast, UV-B irradiation causes a variety of flowering phenotypes during long-day (LD) photoperiods, including unchanged, delayed, and accelerated flowering. We hypothesized that variations in UV-B intensity are responsible for the phenotypic changes under LD photoperiods. Therefore, in this study, Arabidopsis plants were exposed to two distinct UV-B intensities: a low UV-B intensity that activates UVR8-dependent pathways and high UV-B intensity that activates both UVR8-dependent and -independent pathways. Under LD photoperiods, neither the wild-type (WT) nor the uvr8 mutant showed any change in flowering time at either UV-B irradiation intensity. Under the SD photoperiod, UV-B irradiation delayed WT flowering. The expression of flowering locus T (FT) increased after UV-B irradiation under the LD photoperiod in a UVR8-dependent manner. However, despite the increased expression of FT, expression levels of floral meristem identity genes in shoot apical meristem (SAM) were not increased by UV-B irradiation. As UV-B irradiation is known to suppress flowering in SAM in a UVR8-dependent manner, increase in FT expression induced by UV-B irradiation possibly antagonized the suppressive effect of UV-B irradiation. Overall, these results suggest that flowering phenotypes do not change with UV-B intensity but with the balance between the inhibitory and promotive effects of UVR8 activated by UV-B irradiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信