Peng Peng, Wanling Zheng, Yuchen Liu, Jingyuan Huang, Bin Zhang, Jiawei Shen, Jiangang Cao
{"title":"imrexib通过灭活COX-2/PGE2信号通路,调节滑膜巨噬细胞极化,减轻骨关节炎。","authors":"Peng Peng, Wanling Zheng, Yuchen Liu, Jingyuan Huang, Bin Zhang, Jiawei Shen, Jiangang Cao","doi":"10.3389/fbioe.2025.1526092","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Although biomaterials strategies have been regarded as a promising approach for the treatment of osteoarthritis (OA), identifying novel drugs to be delivered for modulate macrophage polarization is still unclear. As a commonly used non-steroidal anti-inflammatory drug for OA, Imrecoxib may be a novel drug to direct and sustain macrophage phenotype. However, the specific protective mechanism of Imrecoxib in OA remains unclear. This study aims to investigate whether Imrecoxib would treat OA by regulating synovial macrophage polarization.</p><p><strong>Methods: </strong>The research involves constructing mouse destabilization of medial meniscus (DMM) model to assess the changes in pain, bone destruction, cartilage degeneration, and synovial macrophage phenotypes following Imrecoxib treatment. Additionally, the effects of macrophage conditioned medium (CM) pretreated with Imrecoxib on the chondrocyte apoptosis, inflammation and degeneration-related factor expression were evaluated. The role of COX-2/PGE2 signaling pathway in the macrophage phenotype changes was further investigated.</p><p><strong>Results: </strong>We found that Imrecoxib alleviated pain, cartilage degeneration and synovitis, promoted polarization of M1 macrophages toward M2 phenotype <i>in vivo</i> and <i>in vitro</i>. <i>In vitro</i> experiments, Imrecoxib-CM protected chondrocyte by modulating macrophage polarization. Furthermore, Imrecoxib regulates macrophage polarization through the COX-2/PGE2 pathway.</p><p><strong>Conclusion: </strong>This study unravels that Imrecoxib protects joint cartilage and attenuates osteoarthritis by modulating synovial macrophage polarization through inactivating COX-2/PGE2 signaling pathway, providing new drug delivery strategy for the clinical treatment of OA.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1526092"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imrecoxib attenuates osteoarthritis by modulating synovial macrophage polarization through inactivating COX-2/PGE2 signaling pathway.\",\"authors\":\"Peng Peng, Wanling Zheng, Yuchen Liu, Jingyuan Huang, Bin Zhang, Jiawei Shen, Jiangang Cao\",\"doi\":\"10.3389/fbioe.2025.1526092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Although biomaterials strategies have been regarded as a promising approach for the treatment of osteoarthritis (OA), identifying novel drugs to be delivered for modulate macrophage polarization is still unclear. As a commonly used non-steroidal anti-inflammatory drug for OA, Imrecoxib may be a novel drug to direct and sustain macrophage phenotype. However, the specific protective mechanism of Imrecoxib in OA remains unclear. This study aims to investigate whether Imrecoxib would treat OA by regulating synovial macrophage polarization.</p><p><strong>Methods: </strong>The research involves constructing mouse destabilization of medial meniscus (DMM) model to assess the changes in pain, bone destruction, cartilage degeneration, and synovial macrophage phenotypes following Imrecoxib treatment. Additionally, the effects of macrophage conditioned medium (CM) pretreated with Imrecoxib on the chondrocyte apoptosis, inflammation and degeneration-related factor expression were evaluated. The role of COX-2/PGE2 signaling pathway in the macrophage phenotype changes was further investigated.</p><p><strong>Results: </strong>We found that Imrecoxib alleviated pain, cartilage degeneration and synovitis, promoted polarization of M1 macrophages toward M2 phenotype <i>in vivo</i> and <i>in vitro</i>. <i>In vitro</i> experiments, Imrecoxib-CM protected chondrocyte by modulating macrophage polarization. Furthermore, Imrecoxib regulates macrophage polarization through the COX-2/PGE2 pathway.</p><p><strong>Conclusion: </strong>This study unravels that Imrecoxib protects joint cartilage and attenuates osteoarthritis by modulating synovial macrophage polarization through inactivating COX-2/PGE2 signaling pathway, providing new drug delivery strategy for the clinical treatment of OA.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1526092\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1526092\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1526092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Imrecoxib attenuates osteoarthritis by modulating synovial macrophage polarization through inactivating COX-2/PGE2 signaling pathway.
Introduction: Although biomaterials strategies have been regarded as a promising approach for the treatment of osteoarthritis (OA), identifying novel drugs to be delivered for modulate macrophage polarization is still unclear. As a commonly used non-steroidal anti-inflammatory drug for OA, Imrecoxib may be a novel drug to direct and sustain macrophage phenotype. However, the specific protective mechanism of Imrecoxib in OA remains unclear. This study aims to investigate whether Imrecoxib would treat OA by regulating synovial macrophage polarization.
Methods: The research involves constructing mouse destabilization of medial meniscus (DMM) model to assess the changes in pain, bone destruction, cartilage degeneration, and synovial macrophage phenotypes following Imrecoxib treatment. Additionally, the effects of macrophage conditioned medium (CM) pretreated with Imrecoxib on the chondrocyte apoptosis, inflammation and degeneration-related factor expression were evaluated. The role of COX-2/PGE2 signaling pathway in the macrophage phenotype changes was further investigated.
Results: We found that Imrecoxib alleviated pain, cartilage degeneration and synovitis, promoted polarization of M1 macrophages toward M2 phenotype in vivo and in vitro. In vitro experiments, Imrecoxib-CM protected chondrocyte by modulating macrophage polarization. Furthermore, Imrecoxib regulates macrophage polarization through the COX-2/PGE2 pathway.
Conclusion: This study unravels that Imrecoxib protects joint cartilage and attenuates osteoarthritis by modulating synovial macrophage polarization through inactivating COX-2/PGE2 signaling pathway, providing new drug delivery strategy for the clinical treatment of OA.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.