{"title":"酿酒酵母与多重抗逆性毕赤酵母的抗逆性机制比较。","authors":"Thasneem Banu Frousnoon, Nam Ngoc Pham, Zong-Yen Wu, Ping-Hung Hsieh, Yasuo Yoshikuni","doi":"10.1093/femsyr/foaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Yeasts play a vital role in both research and industrial biomanufacturing. Saccharomyces cerevisiae has been extensively utilized as a model system. However, its application is often constrained by limited tolerance to the diverse stress conditions encountered in bioprocesses. These challenges have driven increasing interest in nonconventional, multistress-tolerant yeasts as alternative biomanufacturing hosts. This review highlights Pichia kudriavzevii as a promising nonconventional yeast for industrial applications. Unlike S. cerevisiae, P. kudriavzevii exhibits exceptional tolerance to high temperatures, elevated concentrations of furanic and phenolic inhibitors, osmotic stress, salinity, and extreme pH. These traits make it an attractive candidate for industrial processes without requiring extensive genetic modifications to enhance stress resistance. As a result, P. kudriavzevii has emerged as a flagship species for advancing bioeconomy. Despite its industrial potential, the molecular mechanisms underlying P. kudriavzevii's superior stress tolerance remain poorly understood. This review compiles current knowledge on P. kudriavzevii and compares its stress tolerance mechanisms with those of S. cerevisiae, providing insights into its innate resilience. By expanding our understanding of nonconventional yeasts, this review aims to facilitate their broader adoption as robust microbial platforms for industrial biomanufacturing.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097485/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of stress tolerance mechanisms between Saccharomyces cerevisiae and the multistress-tolerant Pichia kudriavzevii.\",\"authors\":\"Thasneem Banu Frousnoon, Nam Ngoc Pham, Zong-Yen Wu, Ping-Hung Hsieh, Yasuo Yoshikuni\",\"doi\":\"10.1093/femsyr/foaf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yeasts play a vital role in both research and industrial biomanufacturing. Saccharomyces cerevisiae has been extensively utilized as a model system. However, its application is often constrained by limited tolerance to the diverse stress conditions encountered in bioprocesses. These challenges have driven increasing interest in nonconventional, multistress-tolerant yeasts as alternative biomanufacturing hosts. This review highlights Pichia kudriavzevii as a promising nonconventional yeast for industrial applications. Unlike S. cerevisiae, P. kudriavzevii exhibits exceptional tolerance to high temperatures, elevated concentrations of furanic and phenolic inhibitors, osmotic stress, salinity, and extreme pH. These traits make it an attractive candidate for industrial processes without requiring extensive genetic modifications to enhance stress resistance. As a result, P. kudriavzevii has emerged as a flagship species for advancing bioeconomy. Despite its industrial potential, the molecular mechanisms underlying P. kudriavzevii's superior stress tolerance remain poorly understood. This review compiles current knowledge on P. kudriavzevii and compares its stress tolerance mechanisms with those of S. cerevisiae, providing insights into its innate resilience. By expanding our understanding of nonconventional yeasts, this review aims to facilitate their broader adoption as robust microbial platforms for industrial biomanufacturing.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foaf024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Comparison of stress tolerance mechanisms between Saccharomyces cerevisiae and the multistress-tolerant Pichia kudriavzevii.
Yeasts play a vital role in both research and industrial biomanufacturing. Saccharomyces cerevisiae has been extensively utilized as a model system. However, its application is often constrained by limited tolerance to the diverse stress conditions encountered in bioprocesses. These challenges have driven increasing interest in nonconventional, multistress-tolerant yeasts as alternative biomanufacturing hosts. This review highlights Pichia kudriavzevii as a promising nonconventional yeast for industrial applications. Unlike S. cerevisiae, P. kudriavzevii exhibits exceptional tolerance to high temperatures, elevated concentrations of furanic and phenolic inhibitors, osmotic stress, salinity, and extreme pH. These traits make it an attractive candidate for industrial processes without requiring extensive genetic modifications to enhance stress resistance. As a result, P. kudriavzevii has emerged as a flagship species for advancing bioeconomy. Despite its industrial potential, the molecular mechanisms underlying P. kudriavzevii's superior stress tolerance remain poorly understood. This review compiles current knowledge on P. kudriavzevii and compares its stress tolerance mechanisms with those of S. cerevisiae, providing insights into its innate resilience. By expanding our understanding of nonconventional yeasts, this review aims to facilitate their broader adoption as robust microbial platforms for industrial biomanufacturing.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.