信使RNA纳米医学:创新与未来方向。

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jyotsana Dwivedi, Pranay Wal, Subbulakshmi Ganesan, Ashish Sharma, Pawan Sharma, Syeda Wajida Kazmi, Reena Gupta
{"title":"信使RNA纳米医学:创新与未来方向。","authors":"Jyotsana Dwivedi, Pranay Wal, Subbulakshmi Ganesan, Ashish Sharma, Pawan Sharma, Syeda Wajida Kazmi, Reena Gupta","doi":"10.2174/0113892037357900250401020207","DOIUrl":null,"url":null,"abstract":"<p><p>With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed Innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Messenger RNA Nanomedicine: Innovations and Future Directions.\",\"authors\":\"Jyotsana Dwivedi, Pranay Wal, Subbulakshmi Ganesan, Ashish Sharma, Pawan Sharma, Syeda Wajida Kazmi, Reena Gupta\",\"doi\":\"10.2174/0113892037357900250401020207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed Innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037357900250401020207\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037357900250401020207","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

凭借其巨大的潜力,mRNA纳米医学已成为治疗和预防多种疾病的现代治疗策略的变革前沿之一。本文综述了mRNA纳米医学的最新进展及其在给药系统创新、稳定性改进和靶向治疗应用方面的前景。mRNA的多功能性意味着几乎任何蛋白质都有可能被编码,使其成为疫苗、基因编辑和蛋白质替代疗法的重要来源。纳米颗粒技术的最新突破显著提高了mRNA分子的传递效率和稳定性,突破了之前关于快速降解和免疫系统激活的障碍。LNPs、聚合物载体和混合纳米载体等创新对于mRNA靶向递送和持续释放的成功至关重要。这篇综述进一步强调了mRNA纳米药物治疗肿瘤、感染性和遗传性疾病的潜力,重点介绍了正在进行的临床试验、新出现的治疗模式,以及未来的发展方向,重点是优化递送平台、mRNA稳定性和扩大mRNA纳米药物治疗的范围。随着新兴技术和解决当前挑战的力量,mRNA纳米医学具有巨大的潜力,可以彻底改变个性化医疗和靶向治疗的未来格局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Messenger RNA Nanomedicine: Innovations and Future Directions.

With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed Innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信