先前决定的再激活会排斥地影响感觉编码,但会吸引地影响决策。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-04-23 eCollection Date: 2025-04-01 DOI:10.1371/journal.pbio.3003150
Minghao Luo, Huihui Zhang, Fang Fang, Huan Luo
{"title":"先前决定的再激活会排斥地影响感觉编码,但会吸引地影响决策。","authors":"Minghao Luo, Huihui Zhang, Fang Fang, Huan Luo","doi":"10.1371/journal.pbio.3003150","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic shaping of perception by past experiences is common in many cognitive functions, reflecting the exploitation of temporal regularities in environments. A striking example is serial dependence, i.e., current perception is biased by previous trials. However, the neural implementation of its operational circle in human brains remains unclear. In two experiments with electroencephalography (EEG)/magnetoencephalography (MEG) recordings and delayed-response tasks, we demonstrate a two-stage 'repulsive-then-attractive' past-present interaction mechanism underlying serial dependence. First, past-trial reports, instead of past stimuli, serve as a prior to be reactivated during both encoding and decision-making. Crucially, past reactivation interacts with current information processing in a two-stage manner: repelling and attracting the present during encoding and decision-making, and arising in the sensory cortex and prefrontal cortex, respectively. Finally, while the early stage occurs automatically, the late stage is modulated by task and predicts bias behavior. These findings might also illustrate general mechanisms of past-present influences in neural operations.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003150"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making.\",\"authors\":\"Minghao Luo, Huihui Zhang, Fang Fang, Huan Luo\",\"doi\":\"10.1371/journal.pbio.3003150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic shaping of perception by past experiences is common in many cognitive functions, reflecting the exploitation of temporal regularities in environments. A striking example is serial dependence, i.e., current perception is biased by previous trials. However, the neural implementation of its operational circle in human brains remains unclear. In two experiments with electroencephalography (EEG)/magnetoencephalography (MEG) recordings and delayed-response tasks, we demonstrate a two-stage 'repulsive-then-attractive' past-present interaction mechanism underlying serial dependence. First, past-trial reports, instead of past stimuli, serve as a prior to be reactivated during both encoding and decision-making. Crucially, past reactivation interacts with current information processing in a two-stage manner: repelling and attracting the present during encoding and decision-making, and arising in the sensory cortex and prefrontal cortex, respectively. Finally, while the early stage occurs automatically, the late stage is modulated by task and predicts bias behavior. These findings might also illustrate general mechanisms of past-present influences in neural operations.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 4\",\"pages\":\"e3003150\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003150\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003150","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在许多认知功能中,过去经验对感知的自动塑造是常见的,反映了对环境中时间规律的利用。一个显著的例子是序列依赖性,即当前的感知受到先前试验的影响。然而,其操作圈在人脑中的神经实现仍不清楚。在脑电图(EEG)/脑磁图(MEG)记录和延迟反应任务的两个实验中,我们证明了一个两阶段的“排斥-然后吸引”的过去-现在相互作用机制。首先,过去的试验报告,而不是过去的刺激,在编码和决策过程中被重新激活。至关重要的是,过去的再激活以两个阶段的方式与当前的信息处理相互作用:在编码和决策过程中排斥和吸引现在,并分别在感觉皮层和前额叶皮层产生。最后,虽然早期阶段是自动发生的,但后期阶段是由任务调节的,并预测偏见行为。这些发现也可能说明神经操作中过去-现在影响的一般机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making.

Automatic shaping of perception by past experiences is common in many cognitive functions, reflecting the exploitation of temporal regularities in environments. A striking example is serial dependence, i.e., current perception is biased by previous trials. However, the neural implementation of its operational circle in human brains remains unclear. In two experiments with electroencephalography (EEG)/magnetoencephalography (MEG) recordings and delayed-response tasks, we demonstrate a two-stage 'repulsive-then-attractive' past-present interaction mechanism underlying serial dependence. First, past-trial reports, instead of past stimuli, serve as a prior to be reactivated during both encoding and decision-making. Crucially, past reactivation interacts with current information processing in a two-stage manner: repelling and attracting the present during encoding and decision-making, and arising in the sensory cortex and prefrontal cortex, respectively. Finally, while the early stage occurs automatically, the late stage is modulated by task and predicts bias behavior. These findings might also illustrate general mechanisms of past-present influences in neural operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信