Hanna Kalenta, Sean P Kilroe, Trevor B Romsdahl, Erik D Marchant, Rosario Maroto, Jennifer J Linares, William K Russell, Blake B Rasmussen
{"title":"组成型活性mTORC1信号调节骨骼肌代谢组和脂质组对运动的反应。","authors":"Hanna Kalenta, Sean P Kilroe, Trevor B Romsdahl, Erik D Marchant, Rosario Maroto, Jennifer J Linares, William K Russell, Blake B Rasmussen","doi":"10.1152/japplphysiol.00987.2024","DOIUrl":null,"url":null,"abstract":"<p><p>A chronic increase in the Mammalian Target of Rapamycin Complex 1 (mTORC1) signaling is implicated in reduced longevity, altered metabolism, and mitochondrial dysfunction. Abnormal mTORC1 signaling may also be involved in the etiology of sarcopenia. To better understand the role of mTORC1 signaling in the regulation of muscle metabolism, we developed an inducible muscle-specific knockout model of DEP domain-containing 5 protein (DEPDC5 mKO), which results in constitutively active mTORC1 signaling. We hypothesized that constitutively active mTORC1 signaling in skeletal muscle would alter the metabolomic and lipidomic response to an acute bout of exercise. Wild-type (WT) and DEPDC5 muscle-specific knockout (KO) mice were studied at rest and following a 1 h bout of treadmill exercise. Acute exercise induced an increased reliance on glycolytic and pentose phosphate pathway (PPP) metabolites in the muscle of mice with hyperactive mTORC1. Lipidomic analysis showed an increase in triglycerides (TGs) in KO mice. Although exercise had a pronounced effect on muscle metabolism, the genotype effect was larger, indicating that constitutively active mTORC1 signaling exerts a dominant influence on metabolic and lipidomic regulation. We conclude that increased mTORC1 signaling shifts muscle metabolism toward greater reliance on nonoxidative energy sources in response to exercise. Understanding the mechanisms responsible for these effects may lead to the development of strategies for restoring proper mTORC1 signaling in conditions such as aging and sarcopenia.<b>NEW & NOTEWORTHY</b> This study demonstrates that hyperactive mTORC1 alters the muscle metabolomic and lipidomic response to exercise, with genotype having a larger effect than exercise. Knockout mice exhibited an increase in reliance on glycolysis and pentose phosphate pathway and an increase in triglyceride turnover. Wild-type mice primarily showed an increase in utilization of TCA cycle and lipid metabolism intermediates.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":"138 5","pages":"1173-1186"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Constitutively active mTORC1 signaling modifies the skeletal muscle metabolome and lipidome response to exercise.\",\"authors\":\"Hanna Kalenta, Sean P Kilroe, Trevor B Romsdahl, Erik D Marchant, Rosario Maroto, Jennifer J Linares, William K Russell, Blake B Rasmussen\",\"doi\":\"10.1152/japplphysiol.00987.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A chronic increase in the Mammalian Target of Rapamycin Complex 1 (mTORC1) signaling is implicated in reduced longevity, altered metabolism, and mitochondrial dysfunction. Abnormal mTORC1 signaling may also be involved in the etiology of sarcopenia. To better understand the role of mTORC1 signaling in the regulation of muscle metabolism, we developed an inducible muscle-specific knockout model of DEP domain-containing 5 protein (DEPDC5 mKO), which results in constitutively active mTORC1 signaling. We hypothesized that constitutively active mTORC1 signaling in skeletal muscle would alter the metabolomic and lipidomic response to an acute bout of exercise. Wild-type (WT) and DEPDC5 muscle-specific knockout (KO) mice were studied at rest and following a 1 h bout of treadmill exercise. Acute exercise induced an increased reliance on glycolytic and pentose phosphate pathway (PPP) metabolites in the muscle of mice with hyperactive mTORC1. Lipidomic analysis showed an increase in triglycerides (TGs) in KO mice. Although exercise had a pronounced effect on muscle metabolism, the genotype effect was larger, indicating that constitutively active mTORC1 signaling exerts a dominant influence on metabolic and lipidomic regulation. We conclude that increased mTORC1 signaling shifts muscle metabolism toward greater reliance on nonoxidative energy sources in response to exercise. Understanding the mechanisms responsible for these effects may lead to the development of strategies for restoring proper mTORC1 signaling in conditions such as aging and sarcopenia.<b>NEW & NOTEWORTHY</b> This study demonstrates that hyperactive mTORC1 alters the muscle metabolomic and lipidomic response to exercise, with genotype having a larger effect than exercise. Knockout mice exhibited an increase in reliance on glycolysis and pentose phosphate pathway and an increase in triglyceride turnover. Wild-type mice primarily showed an increase in utilization of TCA cycle and lipid metabolism intermediates.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\"138 5\",\"pages\":\"1173-1186\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00987.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00987.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Constitutively active mTORC1 signaling modifies the skeletal muscle metabolome and lipidome response to exercise.
A chronic increase in the Mammalian Target of Rapamycin Complex 1 (mTORC1) signaling is implicated in reduced longevity, altered metabolism, and mitochondrial dysfunction. Abnormal mTORC1 signaling may also be involved in the etiology of sarcopenia. To better understand the role of mTORC1 signaling in the regulation of muscle metabolism, we developed an inducible muscle-specific knockout model of DEP domain-containing 5 protein (DEPDC5 mKO), which results in constitutively active mTORC1 signaling. We hypothesized that constitutively active mTORC1 signaling in skeletal muscle would alter the metabolomic and lipidomic response to an acute bout of exercise. Wild-type (WT) and DEPDC5 muscle-specific knockout (KO) mice were studied at rest and following a 1 h bout of treadmill exercise. Acute exercise induced an increased reliance on glycolytic and pentose phosphate pathway (PPP) metabolites in the muscle of mice with hyperactive mTORC1. Lipidomic analysis showed an increase in triglycerides (TGs) in KO mice. Although exercise had a pronounced effect on muscle metabolism, the genotype effect was larger, indicating that constitutively active mTORC1 signaling exerts a dominant influence on metabolic and lipidomic regulation. We conclude that increased mTORC1 signaling shifts muscle metabolism toward greater reliance on nonoxidative energy sources in response to exercise. Understanding the mechanisms responsible for these effects may lead to the development of strategies for restoring proper mTORC1 signaling in conditions such as aging and sarcopenia.NEW & NOTEWORTHY This study demonstrates that hyperactive mTORC1 alters the muscle metabolomic and lipidomic response to exercise, with genotype having a larger effect than exercise. Knockout mice exhibited an increase in reliance on glycolysis and pentose phosphate pathway and an increase in triglyceride turnover. Wild-type mice primarily showed an increase in utilization of TCA cycle and lipid metabolism intermediates.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.