Martha Viviana Roa-Cordero, Christian Alfonso Arenas-Sepúlveda, María Cristina Herrera-Plata, Sandra Milena Leal-Pinto, Nubia Andrea Villota-Salazar, Juan Manuel González-Prieto
{"title":"通过组蛋白去乙酰化酶抑制剂关闭脂性耶氏菌酵母到菌丝的转化。","authors":"Martha Viviana Roa-Cordero, Christian Alfonso Arenas-Sepúlveda, María Cristina Herrera-Plata, Sandra Milena Leal-Pinto, Nubia Andrea Villota-Salazar, Juan Manuel González-Prieto","doi":"10.1016/j.resmic.2025.104299","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi can develop a variety of morphotypes to survive, colonize, adapt and prevail under different environmental conditions. In general, two morphological shapes encompass the others: yeast (unicellular) and hyphae (multicellular). Under specific conditions, some fungi can adopt these two cellular morphologies, and for this reason, they are called dimorphic. Histone acetylation and deacetylation are well-known important mechanisms of chromatin remodelling that control cell differentiation processes as dimorphism. The reactions involved are catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the present work, we used Yarrowia lipolytica as a dimorphic fungal model to investigate the effect of HDAC chemical inhibition on the growth and yeast-to-hyphae switch of fungi. For this purpose, we tested the compounds sodium butyrate (SB) and valproic acid (VPA) as epigenetic modulators. Our results indicated that Y. lipolytica tolerates high doses of these inhibitors due to its lipolytic nature. However, once the metabolic capability of the fungus is overcome, SB and VPA strongly suppress hyphal growth, suggesting that histone acetylation plays a pivotal role in the regulation of this process.</p>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":" ","pages":"104299"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Switching off the yeast-to-hyphae transition in Yarrowia lipolytica through histone deacetylase inhibitors.\",\"authors\":\"Martha Viviana Roa-Cordero, Christian Alfonso Arenas-Sepúlveda, María Cristina Herrera-Plata, Sandra Milena Leal-Pinto, Nubia Andrea Villota-Salazar, Juan Manuel González-Prieto\",\"doi\":\"10.1016/j.resmic.2025.104299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungi can develop a variety of morphotypes to survive, colonize, adapt and prevail under different environmental conditions. In general, two morphological shapes encompass the others: yeast (unicellular) and hyphae (multicellular). Under specific conditions, some fungi can adopt these two cellular morphologies, and for this reason, they are called dimorphic. Histone acetylation and deacetylation are well-known important mechanisms of chromatin remodelling that control cell differentiation processes as dimorphism. The reactions involved are catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the present work, we used Yarrowia lipolytica as a dimorphic fungal model to investigate the effect of HDAC chemical inhibition on the growth and yeast-to-hyphae switch of fungi. For this purpose, we tested the compounds sodium butyrate (SB) and valproic acid (VPA) as epigenetic modulators. Our results indicated that Y. lipolytica tolerates high doses of these inhibitors due to its lipolytic nature. However, once the metabolic capability of the fungus is overcome, SB and VPA strongly suppress hyphal growth, suggesting that histone acetylation plays a pivotal role in the regulation of this process.</p>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\" \",\"pages\":\"104299\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.resmic.2025.104299\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.resmic.2025.104299","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Switching off the yeast-to-hyphae transition in Yarrowia lipolytica through histone deacetylase inhibitors.
Fungi can develop a variety of morphotypes to survive, colonize, adapt and prevail under different environmental conditions. In general, two morphological shapes encompass the others: yeast (unicellular) and hyphae (multicellular). Under specific conditions, some fungi can adopt these two cellular morphologies, and for this reason, they are called dimorphic. Histone acetylation and deacetylation are well-known important mechanisms of chromatin remodelling that control cell differentiation processes as dimorphism. The reactions involved are catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the present work, we used Yarrowia lipolytica as a dimorphic fungal model to investigate the effect of HDAC chemical inhibition on the growth and yeast-to-hyphae switch of fungi. For this purpose, we tested the compounds sodium butyrate (SB) and valproic acid (VPA) as epigenetic modulators. Our results indicated that Y. lipolytica tolerates high doses of these inhibitors due to its lipolytic nature. However, once the metabolic capability of the fungus is overcome, SB and VPA strongly suppress hyphal growth, suggesting that histone acetylation plays a pivotal role in the regulation of this process.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.