{"title":"空间对比计算数值实现的选择影响激光散斑对比成像中微循环定量。","authors":"Marc Chammas, Frédéric Pain","doi":"10.1117/1.JBO.30.4.046006","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Laser speckle contrast imaging (LSCI) allows noninvasive imaging of microcirculation. Its scope of clinical applications is growing, yet the literature lacks a comparison of the accuracy of methods used to compute the spatial contrast <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> from which the blood flow index is derived.</p><p><strong>Aim: </strong>We aim to evaluate the impact on flow quantitation of different computational approaches used to derive <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> .</p><p><strong>Approach: </strong>We compare numerical calculation of <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> in Python and ImageJ applied to noise-free simulated data and to experimental data acquired <i>in vivo</i> in anesthetized mice. The estimation of the decorrelation time <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> , inversely proportional to the blood flow index, is carried out following two approaches: LSCI asymptotic estimation and fitting the multiple exposure speckle imaging (MESI) model to <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> .</p><p><strong>Results: </strong>For simulation data, we found variations of up to 58% for the blood flow index in the LSCI approach. Nonlinear fitting of the MESI model was less affected with discrepancies of only a few percent. Considering experimental data, the LSCI approximation led to <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> with relative differences (up to 35%) depending on the calculation methods. The noise and limited exposure time strongly limited the accuracy of the LSCI asymptotic estimation. Adjustment of the MESI model to the data led to consistent values of <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> in the 0.05 to 1 ms range with significant variations depending on the method used to calculate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> .</p><p><strong>Conclusions: </strong>Numerical methods used to calculate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> should be precisely acknowledged and validated against direct calculation to ensure accuracy. <i>Uniform</i> filter approach leads to accurate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> values and is 100 times more computationally efficient than the <math><mrow><mi>D</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi></mrow> </math> calculation. Other investigated methods lead to various levels of errors in flow index estimation using LSCI. Errors are minimized using larger kernels. MESI derivation of <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> is not immune but less affected by such methodological biases.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046006"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003051/pdf/","citationCount":"0","resultStr":"{\"title\":\"Choice of numerical implementation of spatial contrast calculation impacts microcirculation quantitation in laser speckle contrast imaging.\",\"authors\":\"Marc Chammas, Frédéric Pain\",\"doi\":\"10.1117/1.JBO.30.4.046006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Laser speckle contrast imaging (LSCI) allows noninvasive imaging of microcirculation. Its scope of clinical applications is growing, yet the literature lacks a comparison of the accuracy of methods used to compute the spatial contrast <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> from which the blood flow index is derived.</p><p><strong>Aim: </strong>We aim to evaluate the impact on flow quantitation of different computational approaches used to derive <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> .</p><p><strong>Approach: </strong>We compare numerical calculation of <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> in Python and ImageJ applied to noise-free simulated data and to experimental data acquired <i>in vivo</i> in anesthetized mice. The estimation of the decorrelation time <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> , inversely proportional to the blood flow index, is carried out following two approaches: LSCI asymptotic estimation and fitting the multiple exposure speckle imaging (MESI) model to <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> .</p><p><strong>Results: </strong>For simulation data, we found variations of up to 58% for the blood flow index in the LSCI approach. Nonlinear fitting of the MESI model was less affected with discrepancies of only a few percent. Considering experimental data, the LSCI approximation led to <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> with relative differences (up to 35%) depending on the calculation methods. The noise and limited exposure time strongly limited the accuracy of the LSCI asymptotic estimation. Adjustment of the MESI model to the data led to consistent values of <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> in the 0.05 to 1 ms range with significant variations depending on the method used to calculate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> .</p><p><strong>Conclusions: </strong>Numerical methods used to calculate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> should be precisely acknowledged and validated against direct calculation to ensure accuracy. <i>Uniform</i> filter approach leads to accurate <math> <mrow><msub><mi>K</mi> <mi>s</mi></msub> </mrow> </math> values and is 100 times more computationally efficient than the <math><mrow><mi>D</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi></mrow> </math> calculation. Other investigated methods lead to various levels of errors in flow index estimation using LSCI. Errors are minimized using larger kernels. MESI derivation of <math> <mrow><msub><mi>τ</mi> <mi>c</mi></msub> </mrow> </math> is not immune but less affected by such methodological biases.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 4\",\"pages\":\"046006\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.4.046006\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.4.046006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
意义:激光散斑造影(LSCI)可以实现微循环的无创成像。它的临床应用范围正在扩大,但文献缺乏用于计算空间对比度K s的方法的准确性的比较,而血流指数是从K s推导出来的。目的:我们的目的是评估不同计算方法对流量定量的影响。方法:我们比较了Python和ImageJ中K s的数值计算,应用于无噪声的模拟数据和麻醉小鼠体内获得的实验数据。对去相关时间τ c的估计与血流指数成反比,采用两种方法进行:LSCI渐近估计和多次暴露散斑成像(MESI)模型拟合K s (T)。结果:对于模拟数据,我们发现LSCI方法中血流指数的变化高达58%。MESI模型的非线性拟合受影响较小,误差只有几个百分点。考虑到实验数据,根据不同的计算方法,LSCI近似得到的K值存在相对差异(最高可达35%)。噪声和有限的暴露时间严重限制了LSCI渐近估计的准确性。MESI模型对数据的调整导致τ c在0.05至1 ms范围内的值一致,并且根据用于计算K s的方法有显着变化。结论:用于计算K s的数值方法应该精确地承认并验证与直接计算相对应的方法,以确保准确性。均匀滤波方法可以获得精确的K值,并且计算效率是D - i - c - t计算的100倍。其他已研究的方法在使用LSCI估计流量指数时会导致不同程度的误差。使用更大的内核可以最小化错误。MESI推导的τ c不是免疫的,但受这种方法偏差的影响较小。
Choice of numerical implementation of spatial contrast calculation impacts microcirculation quantitation in laser speckle contrast imaging.
Significance: Laser speckle contrast imaging (LSCI) allows noninvasive imaging of microcirculation. Its scope of clinical applications is growing, yet the literature lacks a comparison of the accuracy of methods used to compute the spatial contrast from which the blood flow index is derived.
Aim: We aim to evaluate the impact on flow quantitation of different computational approaches used to derive .
Approach: We compare numerical calculation of in Python and ImageJ applied to noise-free simulated data and to experimental data acquired in vivo in anesthetized mice. The estimation of the decorrelation time , inversely proportional to the blood flow index, is carried out following two approaches: LSCI asymptotic estimation and fitting the multiple exposure speckle imaging (MESI) model to .
Results: For simulation data, we found variations of up to 58% for the blood flow index in the LSCI approach. Nonlinear fitting of the MESI model was less affected with discrepancies of only a few percent. Considering experimental data, the LSCI approximation led to with relative differences (up to 35%) depending on the calculation methods. The noise and limited exposure time strongly limited the accuracy of the LSCI asymptotic estimation. Adjustment of the MESI model to the data led to consistent values of in the 0.05 to 1 ms range with significant variations depending on the method used to calculate .
Conclusions: Numerical methods used to calculate should be precisely acknowledged and validated against direct calculation to ensure accuracy. Uniform filter approach leads to accurate values and is 100 times more computationally efficient than the calculation. Other investigated methods lead to various levels of errors in flow index estimation using LSCI. Errors are minimized using larger kernels. MESI derivation of is not immune but less affected by such methodological biases.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.