{"title":"嘌呤代谢途径对大鼠运动能力的影响。","authors":"Dengbo Chen, Christian Noble Biney, Qian Wang, Mingzheng Cai, Shi Cheng, Wentao Chen, Jinrui Zhang, Junran Zhao, Yuhan Zhang, Wenzhong Zhang","doi":"10.3390/metabo15040241","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: The natural differences in running capacities among rats remain poorly understood, and the mechanisms driving these differences need further investigation. <b>Methods</b>: Twenty male Sprague-Dawley (SD) rats were selected. High and low running capacity rats were identified using Treadmill Exhaustion Tests. Peripheral blood was collected for serum isolation, followed by a metabolomics analysis using LC-MS/MS. Data were preprocessed, and a principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were applied to identify metabolic profile differences. Significant metabolites were screened, and a pathway enrichment analysis was conducted using the KEGG database to determine key metabolic pathways. Forty SD rats (equal male and female) were randomly divided into an inosine triphosphate (ITP) group (24.29 mg/kg.bw daily) and a control group. Running capacity was assessed after one week of continuous treatment. <b>Results</b>: Three independent measurements showed consistent differences in running capacity. A total of 519 differential metabolites were identified, with 255 up-regulated and 264 down-regulated. The KEGG pathway analysis revealed a significant enrichment of the Purine Metabolism pathway (ITP-ATP) in the high running capacity group (<i>p</i> < 0.05). The ITP-treated group exhibited a significantly higher running capacity than the controls (<i>p</i> < 0.05), confirming the efficacy of dietary ITP supplementation. <b>Conclusions</b>: The running capacity of rats is influenced by the ITP-ATP pathway, and exogenous ITP administration through dietary intervention significantly improves running ability.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Purine Metabolism Pathway Influence on Running Capacity in Rats.\",\"authors\":\"Dengbo Chen, Christian Noble Biney, Qian Wang, Mingzheng Cai, Shi Cheng, Wentao Chen, Jinrui Zhang, Junran Zhao, Yuhan Zhang, Wenzhong Zhang\",\"doi\":\"10.3390/metabo15040241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: The natural differences in running capacities among rats remain poorly understood, and the mechanisms driving these differences need further investigation. <b>Methods</b>: Twenty male Sprague-Dawley (SD) rats were selected. High and low running capacity rats were identified using Treadmill Exhaustion Tests. Peripheral blood was collected for serum isolation, followed by a metabolomics analysis using LC-MS/MS. Data were preprocessed, and a principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were applied to identify metabolic profile differences. Significant metabolites were screened, and a pathway enrichment analysis was conducted using the KEGG database to determine key metabolic pathways. Forty SD rats (equal male and female) were randomly divided into an inosine triphosphate (ITP) group (24.29 mg/kg.bw daily) and a control group. Running capacity was assessed after one week of continuous treatment. <b>Results</b>: Three independent measurements showed consistent differences in running capacity. A total of 519 differential metabolites were identified, with 255 up-regulated and 264 down-regulated. The KEGG pathway analysis revealed a significant enrichment of the Purine Metabolism pathway (ITP-ATP) in the high running capacity group (<i>p</i> < 0.05). The ITP-treated group exhibited a significantly higher running capacity than the controls (<i>p</i> < 0.05), confirming the efficacy of dietary ITP supplementation. <b>Conclusions</b>: The running capacity of rats is influenced by the ITP-ATP pathway, and exogenous ITP administration through dietary intervention significantly improves running ability.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15040241\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040241","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Purine Metabolism Pathway Influence on Running Capacity in Rats.
Background: The natural differences in running capacities among rats remain poorly understood, and the mechanisms driving these differences need further investigation. Methods: Twenty male Sprague-Dawley (SD) rats were selected. High and low running capacity rats were identified using Treadmill Exhaustion Tests. Peripheral blood was collected for serum isolation, followed by a metabolomics analysis using LC-MS/MS. Data were preprocessed, and a principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were applied to identify metabolic profile differences. Significant metabolites were screened, and a pathway enrichment analysis was conducted using the KEGG database to determine key metabolic pathways. Forty SD rats (equal male and female) were randomly divided into an inosine triphosphate (ITP) group (24.29 mg/kg.bw daily) and a control group. Running capacity was assessed after one week of continuous treatment. Results: Three independent measurements showed consistent differences in running capacity. A total of 519 differential metabolites were identified, with 255 up-regulated and 264 down-regulated. The KEGG pathway analysis revealed a significant enrichment of the Purine Metabolism pathway (ITP-ATP) in the high running capacity group (p < 0.05). The ITP-treated group exhibited a significantly higher running capacity than the controls (p < 0.05), confirming the efficacy of dietary ITP supplementation. Conclusions: The running capacity of rats is influenced by the ITP-ATP pathway, and exogenous ITP administration through dietary intervention significantly improves running ability.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.