Nicholas Kusi-Appauh, Stefan H Mueller, Stephen F Ralph, Olga Yurieva, Michael E O'Donnell, Jacob S Lewis, Lisanne M Spenkelink
{"title":"g -四联体DNA聚合酶动力学的单分子荧光可视化。","authors":"Nicholas Kusi-Appauh, Stefan H Mueller, Stephen F Ralph, Olga Yurieva, Michael E O'Donnell, Jacob S Lewis, Lisanne M Spenkelink","doi":"10.3791/68080","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of proteins involved in eukaryotic DNA replication to overcome obstacles - such as protein and DNA 'roadblocks' - is critical for ensuring faithful genome duplication. G-quadruplexes are higher-order nucleic acid structures that form in guanine-rich regions of DNA and have been shown to act as obstacles, interfering with genomic maintenance pathways. This study introduces a real-time, fluorescence microscopy-based method to observe DNA polymerase interactions with G-quadruplex structures. Short, primed DNA oligonucleotides containing a G-quadruplex were immobilized on functionalized glass coverslips within a microfluidic flow cell. Fluorescently labeled DNA polymerases were introduced, allowing their behavior and stoichiometry to be monitored over time. This approach enabled the observation of polymerase behavior as it was stalled by a G-quadruplex. Specifically, using fluorescently labeled yeast polymerase δ, it was found that upon encountering a G-quadruplex, the polymerase undergoes a continuous cycle of binding and unbinding. This single-molecule assay can be adapted to study interactions between various DNA-maintenance proteins and obstacles on the DNA substrate.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 218","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Molecule Fluorescence Visualization of DNA Polymerase Dynamics at G-Quadruplexes.\",\"authors\":\"Nicholas Kusi-Appauh, Stefan H Mueller, Stephen F Ralph, Olga Yurieva, Michael E O'Donnell, Jacob S Lewis, Lisanne M Spenkelink\",\"doi\":\"10.3791/68080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability of proteins involved in eukaryotic DNA replication to overcome obstacles - such as protein and DNA 'roadblocks' - is critical for ensuring faithful genome duplication. G-quadruplexes are higher-order nucleic acid structures that form in guanine-rich regions of DNA and have been shown to act as obstacles, interfering with genomic maintenance pathways. This study introduces a real-time, fluorescence microscopy-based method to observe DNA polymerase interactions with G-quadruplex structures. Short, primed DNA oligonucleotides containing a G-quadruplex were immobilized on functionalized glass coverslips within a microfluidic flow cell. Fluorescently labeled DNA polymerases were introduced, allowing their behavior and stoichiometry to be monitored over time. This approach enabled the observation of polymerase behavior as it was stalled by a G-quadruplex. Specifically, using fluorescently labeled yeast polymerase δ, it was found that upon encountering a G-quadruplex, the polymerase undergoes a continuous cycle of binding and unbinding. This single-molecule assay can be adapted to study interactions between various DNA-maintenance proteins and obstacles on the DNA substrate.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 218\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68080\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68080","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Single-Molecule Fluorescence Visualization of DNA Polymerase Dynamics at G-Quadruplexes.
The ability of proteins involved in eukaryotic DNA replication to overcome obstacles - such as protein and DNA 'roadblocks' - is critical for ensuring faithful genome duplication. G-quadruplexes are higher-order nucleic acid structures that form in guanine-rich regions of DNA and have been shown to act as obstacles, interfering with genomic maintenance pathways. This study introduces a real-time, fluorescence microscopy-based method to observe DNA polymerase interactions with G-quadruplex structures. Short, primed DNA oligonucleotides containing a G-quadruplex were immobilized on functionalized glass coverslips within a microfluidic flow cell. Fluorescently labeled DNA polymerases were introduced, allowing their behavior and stoichiometry to be monitored over time. This approach enabled the observation of polymerase behavior as it was stalled by a G-quadruplex. Specifically, using fluorescently labeled yeast polymerase δ, it was found that upon encountering a G-quadruplex, the polymerase undergoes a continuous cycle of binding and unbinding. This single-molecule assay can be adapted to study interactions between various DNA-maintenance proteins and obstacles on the DNA substrate.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.