{"title":"不成熟小鼠可逆性单侧输尿管梗阻模型。","authors":"Ping Li, Qi-Tong Guo, Mei-Iing Chen, Chen-Xi Jia, Xing Liu, Tao Lin, Da-Wei He, De-Ying Zhang, Guang-Hui Wei","doi":"10.3791/67238","DOIUrl":null,"url":null,"abstract":"<p><p>Unilateral ureteral obstruction (UUO) is a common cause of chronic kidney disease (CKD), leading to the progression of renal interstitial fibrosis and ultimately resulting in irreversible kidney damage. The alleviation of UUO is crucial. Several animal models of reversible unilateral ureteral obstruction (RUUO) have been established in the literature, enabling the observation of structural changes and functional damage while also simulating physiological and pathophysiological changes following the relief of ureteral obstruction. In this study, a reversible obstruction model was established in the unilateral murine ureter using a silicone tube. Significant renal damage was observed prior to obstruction relief, with partial recovery noted afterward. Unlike UUO, this model prevents progressive hydronephrosis, leading to distinct pathological outcomes. This simple surgical procedure demonstrates a high success rate and holds promise as a classical model for investigating reversible obstructive nephropathy and potential treatments for renal interstitial fibrosis. Furthermore, it provides a practical platform for studying the mechanisms of recovery from obstructive nephropathy, renal cell regeneration, and tissue remodeling.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 218","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Immature Murine Model of Reversible Unilateral Ureteral Obstruction.\",\"authors\":\"Ping Li, Qi-Tong Guo, Mei-Iing Chen, Chen-Xi Jia, Xing Liu, Tao Lin, Da-Wei He, De-Ying Zhang, Guang-Hui Wei\",\"doi\":\"10.3791/67238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unilateral ureteral obstruction (UUO) is a common cause of chronic kidney disease (CKD), leading to the progression of renal interstitial fibrosis and ultimately resulting in irreversible kidney damage. The alleviation of UUO is crucial. Several animal models of reversible unilateral ureteral obstruction (RUUO) have been established in the literature, enabling the observation of structural changes and functional damage while also simulating physiological and pathophysiological changes following the relief of ureteral obstruction. In this study, a reversible obstruction model was established in the unilateral murine ureter using a silicone tube. Significant renal damage was observed prior to obstruction relief, with partial recovery noted afterward. Unlike UUO, this model prevents progressive hydronephrosis, leading to distinct pathological outcomes. This simple surgical procedure demonstrates a high success rate and holds promise as a classical model for investigating reversible obstructive nephropathy and potential treatments for renal interstitial fibrosis. Furthermore, it provides a practical platform for studying the mechanisms of recovery from obstructive nephropathy, renal cell regeneration, and tissue remodeling.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 218\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67238\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67238","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An Immature Murine Model of Reversible Unilateral Ureteral Obstruction.
Unilateral ureteral obstruction (UUO) is a common cause of chronic kidney disease (CKD), leading to the progression of renal interstitial fibrosis and ultimately resulting in irreversible kidney damage. The alleviation of UUO is crucial. Several animal models of reversible unilateral ureteral obstruction (RUUO) have been established in the literature, enabling the observation of structural changes and functional damage while also simulating physiological and pathophysiological changes following the relief of ureteral obstruction. In this study, a reversible obstruction model was established in the unilateral murine ureter using a silicone tube. Significant renal damage was observed prior to obstruction relief, with partial recovery noted afterward. Unlike UUO, this model prevents progressive hydronephrosis, leading to distinct pathological outcomes. This simple surgical procedure demonstrates a high success rate and holds promise as a classical model for investigating reversible obstructive nephropathy and potential treatments for renal interstitial fibrosis. Furthermore, it provides a practical platform for studying the mechanisms of recovery from obstructive nephropathy, renal cell regeneration, and tissue remodeling.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.